Immunoglobulin E (IgE) is thought to have evolved to protect mammalian hosts against parasitic infections or toxins and plays a central role in the pathogenesis, diagnosis, and therapy of IgE-mediated allergy. Despite the prominence of IgE responses in most parasitic infections, and in stark contrast to its use in the diagnosis of allergy, this isotype is almost completely unexploited for parasite diagnosis. Here, we discuss the perceived or real limitations of IgE-based diagnosis in parasitology and suggest that the recent creation of a new generation of very sensitive cellular IgE-based reporters may represent a powerful new diagnostic platform, but needs to be based on a very careful choice of diagnostic allergens.
Urinary tract infections (UTIs) affect a major proportion of the world population but have limited non-antibiotic-based therapeutic and preventative strategies against UTIs. Facultative intracellular uropathogens such as strains of uropathogenic E. coli, K. pneumoniae, E. faecalis, E. cloacae are well-known uropathogens causing UTIs. These pathogens manipulate several host-signaling pathways during infection, which contributes to recurrent UTIs and inappropriate antibiotic application. Since host cell receptor tyrosine kinases (RTKs) are critical for the entry, survival and replication of intracellular pathogens, we investigated whether different uropathogens require host EPHA2 receptors for their intracellular survival using a cell culture model of intracellular infection in human bladder epithelial cells (BECs). Infection of BECs with seven different uropathogens enhanced the expression levels and activation of EPHA2. The significance of EPHA2 signaling for uropathogen infection was investigated by silencing EPHA2 expression using RNA interference or by inhibiting the kinase activity of EPHA2 using small-molecule compounds such as dasatinib or ALW-II-41-27. Both preventive and therapeutic tyrosine kinase inhibition significantly reduced the intracellular bacterial load. Thus, our results demonstrate the involvement of host cell EPHA2 receptor during intracellular uropathogen infection of BECs, and targeting RTK activity is a viable non-antibiotic therapeutic strategy for managing recurrent UTIs.
Rat basophilic leukaemia (RBL) cells have been used for decades as a model of high-affinity Immunoglobulin E (IgE) receptor (FcεRI) signalling. Here, we describe the generation and use of huNPY-mRFP, a new humanised fluorescent IgE reporter cell line. Fusion of Neuropeptide Y (NPY) with monomeric red fluorescent protein (mRFP) results in targeting of fluorescence to the granules and its fast release into the supernatant upon IgE-dependent stimulation. Following overnight sensitisation with serum, optimal release of fluorescence upon dose-dependent stimulation with allergen-containing extracts could be measured after 45 min, without cell lysis or addition of any reagents. Five substitutions (D194A, K212A, K216A, K226A, and K230A) were introduced into the FcεRIα cDNA used for transfection, which resulted in the removal of known endoplasmic reticulum retention signals and high surface expression of human FcεRIα* in huNPY-mRFP cells (where * denotes the penta-substituted variant), comparable to the ~500,000 FcεRIα molecules per cell in the RS-ATL8 humanised luciferase reporter, which is a human FcεRIα/FcεRIγ double transfectant. The huNPY-mRFP reporter was used to demonstrate engagement of specific IgE in sera of Echinococcus granulosus-infected individuals by E. granulosus elongation factor EgEF-1β and, to a lesser extent, by EgEF-1δ, which had been previously described as IgE-immunoreactive EgEF-1β/δ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.