Background Feelings of loneliness are associated with poor physical and mental health. Detection of loneliness through passive sensing on personal devices can lead to the development of interventions aimed at decreasing rates of loneliness. Objective The aim of this study was to explore the potential of using passive sensing to infer levels of loneliness and to identify the corresponding behavioral patterns. Methods Data were collected from smartphones and Fitbits (Flex 2) of 160 college students over a semester. The participants completed the University of California, Los Angeles (UCLA) loneliness questionnaire at the beginning and end of the semester. For a classification purpose, the scores were categorized into high (questionnaire score>40) and low (≤40) levels of loneliness. Daily features were extracted from both devices to capture activity and mobility, communication and phone usage, and sleep behaviors. The features were then averaged to generate semester-level features. We used 3 analytic methods: (1) statistical analysis to provide an overview of loneliness in college students, (2) data mining using the Apriori algorithm to extract behavior patterns associated with loneliness, and (3) machine learning classification to infer the level of loneliness and the change in levels of loneliness using an ensemble of gradient boosting and logistic regression algorithms with feature selection in a leave-one-student-out cross-validation manner. Results The average loneliness score from the presurveys and postsurveys was above 43 (presurvey SD 9.4 and postsurvey SD 10.4), and the majority of participants fell into the high loneliness category (scores above 40) with 63.8% (102/160) in the presurvey and 58.8% (94/160) in the postsurvey. Scores greater than 1 standard deviation above the mean were observed in 12.5% (20/160) of the participants in both pre- and postsurvey scores. The majority of scores, however, fell between 1 standard deviation below and above the mean (pre=66.9% [107/160] and post=73.1% [117/160]). Our machine learning pipeline achieved an accuracy of 80.2% in detecting the binary level of loneliness and an 88.4% accuracy in detecting change in the loneliness level. The mining of associations between classifier-selected behavioral features and loneliness indicated that compared with students with low loneliness, students with high levels of loneliness were spending less time outside of campus during evening hours on weekends and spending less time in places for social events in the evening on weekdays (support=17% and confidence=92%). The analysis also indicated that more activity and less sedentary behavior, especially in the evening, was associated with a decrease in levels of loneliness from the beginning of the semester to the end of it (support=31% and confidence=92%). Conclusions Passive sensing has the potential for detecting loneliness in college stu...
We present a machine learning approach that uses data from smartphones and fitness trackers of 138 college students to identify students that experienced depressive symptoms at the end of the semester and students whose depressive symptoms worsened over the semester. Our novel approach is a feature extraction technique that allows us to select meaningful features indicative of depressive symptoms from longitudinal data. It allows us to detect the presence of post-semester depressive symptoms with an accuracy of 85.7% and change in symptom severity with an accuracy of 85.4%. It also predicts these outcomes with an accuracy of >80%, 11–15 weeks before the end of the semester, allowing ample time for pre-emptive interventions. Our work has significant implications for the detection of health outcomes using longitudinal behavioral data and limited ground truth. By detecting change and predicting symptoms several weeks before their onset, our work also has implications for preventing depression.
The rate of depression in college students is rising, which is known to increase suicide risk, lower academic performance and double the likelihood of dropping out of school. Existing work on fnding relationships between passively sensed behavior and depression, as well as detecting depression, mainly derives relevant unimodal features from a single sensor. However, co-occurrence of values in multiple sensors may provide better features, because such features can describe behavior in context. We present a new method to extract contextually fltered features from passively collected, time-series mobile data via association rule mining. After calculating traditional unimodal features from the data, we extract rules that relate unimodal features to each other using association rule mining. We extract rules from each class separately (e.g., depression vs. nondepression). We introduce a new metric to select a subset of rules that distinguish between the two classes. From these rules, which capture the relationship between multiple unimodal features, we automatically extract contextually fltered features. These features are then fed into a traditional machine learning pipeline to detect the class of interest (in our case, depression), defned by whether a student has a high BDI-II score at the end of the semester. The behavior rules generated by our methods are highly interpretable representations of diferences between classes. Our best model uses contextually-fltered features to signifcantly outperform a standard model that uses only unimodal features, by an average of 9.7% across a variety of metrics. We further verifed the generalizability of our approach on a second dataset, and achieved very similar results. CCS Concepts: • Human-centered computing Ubiquitous and mobile computing; • Applied computing Life and medical sciences.
We describe a Twitter sentiment analysis system developed by combining a rule-based classifier with supervised learning. We submitted our results for the message-level subtask in SemEval 2015 Task 10, and achieved a F 1 -score of 57.06%. The rule-based classifier is based on rules that are dependent on the occurrences of emoticons and opinion words in tweets. Whereas, the Support Vector Machine (SVM) is trained on semantic, dependency, and sentiment lexicon based features. The tweets are classified as positive, negative or unknown by the rule-based classifier, and as positive, negative or neutral by the SVM. The results we obtained show that rules can help refine the SVM's predictions.
The prevalence of mobile phones and wearable devices enables the passive capturing and modeling of human behavior at an unprecedented resolution and scale. Past research has demonstrated the capability of mobile sensing to model aspects of physical health, mental health, education, and work performance, etc. However, most of the algorithms and models proposed in previous work follow a one-size-fits-all (i.e., population modeling) approach that looks for common behaviors amongst all users, disregarding the fact that individuals can behave very differently, resulting in reduced model performance. Further, black-box models are often used that do not allow for interpretability and human behavior understanding. We present a new method to address the problems of personalized behavior classification and interpretability, and apply it to depression detection among college students. Inspired by the idea of collaborative-filtering, our method is a type of memory-based learning algorithm. It leverages the relevance of mobile-sensed behavior features among individuals to calculate personalized relevance weights, which are used to impute missing data and select features according to a specific modeling goal (e.g., whether the student has depressive symptoms) in different time epochs, i.e., times of the day and days of the week. It then compiles features from epochs using majority voting to obtain the final prediction. We apply our algorithm on a depression detection dataset collected from first-year college students with low data-missing rates and show that our method outperforms the state-of-the-art machine learning model by 5.1% in accuracy and 5.5% in F1 score. We further verify the pipeline-level generalizability of our approach by achieving similar results on a second dataset, with an average improvement of 3.4% across performance metrics. Beyond achieving better classification performance, our novel approach is further able to generate personalized interpretations of the models for each individual. These interpretations are supported by existing depression-related literature and can potentially inspire automated and personalized depression intervention design in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.