Titanium dioxide nanoparticles (TiO 2 NPs) are the most produced nanomaterial for food additives, pigments, photocatalysis, and personal care products. These nanomaterials are at the forefront of rapidly developing indispensable nanotechnology. In all these nanomaterials, titanium dioxide (TiO 2 ) is the most common nanomaterial which is being synthesized for many years. These nanoparticles of TiO 2 are widely used at the commercial level, especially in cosmetic industries. High usage in such a way has increased the toxicological consequences of the human population. Several studies have shown that TiO 2 NPs accumulated after oral exposure or inhalation in the alimentary canal, lungs, heart, liver, spleen, cardiac muscle, and kidneys. Additionally, in mice and rats, they disturb glucose and lipid homeostasis. Moreover, TiO 2 nanoparticles primarily cause adverse reactions by inducing oxidative stress that leads to cell damage, inflammation, genotoxicity, and adverse immune responses. The form and level of destruction are strongly based on the physical and chemical properties of TiO 2 nanoparticles, which administer their reactivity and bioavailability. Studies give indications that TiO 2 NPs cause both DNA strand breaks and chromosomal damages. The effects of genotoxicity do not depend only on particle surface changes, size, and exposure route, but also relies on the duration of exposure. Most of these effects may be because of a very high dose of TiO 2 NPs. Despite increased production and use, epidemiological data for TiO 2 NPs is still missing. This review discusses previous research regarding the impact of TiO 2 NP toxicity on human health and highlights areas that require further understanding in concern of jeopardy to the human population. This review is important to point out areas where extensive research is needed; thus, their possible impact on individual health should be investigated in more details.
Japanese Encephalitis virus (JEV) is a zoonotic flavivirus that represents the most significant etiology of childhood viral neurological infections throughout the Asia. During the last 20 years, JEV genotype dominance has shifted from genotype III (GIII) to genotype I (GI). To date, the exact mechanism of this displacement is still not known. Culex (Cx.) mosquitoes are the most common species in China and play an essential role in maintaining JEV enzootic transmission cycle. In this study, we used Cx. pipiens mosquitoes from China as an in vivo mosquito model to explore if mosquitoes played a potential role in JEV genotype shift. We exposed female Cx. pipiens mosquitoes orally to either GI or GIII JEV strains. Midgut, whole mosquitoes, secondary organs, and salivary glands of JEV-infected mosquitoes were collected at 7 and 14 days of post infection (dpi) and subjected to measure the infection rate, replication kinetics, dissemination rate and transmission potential of the infected JEV strains in Cx. pipiens mosquitoes by 50% tissue culture infective dose assay. We found that Cx. pipiens mosquito was competent vector for both GI and GIII JEV infection, with similar infection rates and growth kinetics. After the establishment of infection, Cx. pipiens mosquitoes disseminated both JEV genotypes to secondary organs at similar rates of dissemination. A few GI-infected mosquito salivary glands (16.2%) were positive for GI virus, whereas GIII virus was undetectable in GIII-infected mosquito salivary glands at 7 dpi. However, 29.4% (5/17) and 36.3% (8/22) were positive for GI- and GIII-infected mosquito salivary glands at 14 dpi, respectively, showing an increase in JEV positive rate. No statistical difference in the transmission rate between GI- and GIII-infected mosquitoes was detected. Our experiment data demonstrated that GI and GIII viruses have similar infectivity in Cx. pipiens mosquitoes, suggesting that Cx. pipiens mosquitoes from China may not play a critical role in JEV genotype shift. Although the current data were obtained solely from Cx. pipiens mosquitoes, it is likely that the conclusion drawn could be extrapolated to the role of mosquitoes in JEV genotype shift.
Ovary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.