We report increased activation of frontal and medial parietal regions during social judgment in patients with schizophrenia, accompanied by decreased connectivity between the amygdala and insula. We suggest that the increased activation of frontal control systems and association cortex may reflect a compensatory mechanism for impaired connectivity of the amygdala with other parts of the social brain networks in schizophrenia.
Functional Magnetic Resonance Imaging (fMRI) represents a powerful tool with which to examine brain functioning and development in typically developing pediatric groups as well as children and adolescents with clinical disorders. However, fMRI data can be highly susceptible to misinterpretation due to the effects of excessive levels of noise, often related to head motion. Imaging children, especially with developmental disorders, requires extra considerations related to hyperactivity, anxiety and the ability to perform and maintain attention to the fMRI paradigm. We discuss a number of methods that can be employed to minimize noise, in particular movement-related noise. To this end we focus on strategies prior to, during and following the data acquisition phase employed primarily within our own laboratory. We discuss the impact of factors such as experimental design, screening of potential participants and pre-scan training on head motion in our adolescents with developmental disorders and typical development. We make some suggestions that may minimize noise during data acquisition itself and finally we briefly discuss some current processing techniques that may help to identify and remove noise in the data. Many advances have been made in the field of pediatric imaging, particularly with regard to research involving children with developmental disorders. Mindfulness of issues such as those discussed here will ensure continued progress and greater consistency across studies.
Distracting emotional information impairs attention more in schizophrenia (SCZ) than in never-psychotic individuals. However, it is unclear whether this impairment and its neural circuitry is indicative generally of psychosis, or specifically of SCZ, and whether it is even more specific to certain SCZ symptoms (eg, deficit syndrome). It is also unclear if this abnormality contributes to impaired behavioral performance and real-world functioning. Functional imaging data were recorded while individuals with SCZ, bipolar disorder with psychosis (BDP) and no history of psychotic disorders (CON) attended to identity of faces while ignoring their emotional expressions. We examined group differences in functional connectivity between amygdala, involved in emotional evaluation, and sub-regions of medial prefrontal cortex (MPFC), involved in emotion regulation and cognitive control. Additionally, we examined correlation of this connectivity with deficit syndrome and real-world functioning. Behaviorally, SCZ showed the worst accuracy when matching the identity of emotional vs neutral faces. Neurally, SCZ showed lower amygdala-MPFC connectivity than BDP and CON. BPD did not differ from CON, neurally or behaviorally. In patients, reduced amygdala-MPFC connectivity during emotional distractors was related to worse emotional vs neutral accuracy, greater deficit syndrome severity, and unemployment. Thus, reduced amygdala-MPFC functional connectivity during emotional distractors reflects a deficit that is specific to SCZ. This reduction in connectivity is associated with worse clinical and real-world functioning. Overall, these findings provide support for the specificity and clinical utility of amygdala-MPFC functional connectivity as a potential neural marker of SCZ.
Measures of cortical folding ('gyrification') and connectivity are both reported to be disrupted in schizophrenia. There are also reports that increases in prefrontal gyrification may be predictive of subsequent illness in individuals at familial risk of the disorder. Such measures therefore have important potential clinical relevance. The nature of the relationship between cortical morphology and underlying connectivity is however unclear. In the current study we sought to explore the relationship between measures of gyrification and functional connectivity in a cohort of individuals at high genetic risk for the disorder. The theoretical background is based on the hypothesis that increased gyrification index (GI) in the prefrontal cortex may reflect increased short range regional connectivity. The cohort comprised 68 young unaffected relatives of schizophrenia patients and 21 healthy controls. Cortical folding was assessed using an automated Gyrification Index method (A-GI). Participants performed the Hayling sentence completion paradigm in the scanner and measures of functional connectivity were assessed using a correlation based approach. In the high risk subjects significant positive associations were found between prefrontal GI and prefrontal lateral-medial connectivity, while a negative correlation was found between prefrontal GI and prefrontal-thalamic connectivity. These associations indicate that measures describing morphological features of the brain surface relate to measures of underlying functional connectivity in the high risk subjects. Correlations in high risk people were more pronounced than in control subjects. We suggest our previous finding of increased prefrontal gyrification may therefore relate to increased local short range prefrontal connectivity and reduced long range connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.