The formation of a superficial layer of tiny flakes has been observed on teeth prepared by Erbium lasers. It has been suggested that removing this layer (mechanically or chemically) may increase the bond strength of the resin composite. The purpose of this study is to evaluate the effect of various etching times on bond strength of resin composite to enamel and dentin prepared by Er,Cr:YSGG laser. Sixty previously flattened human molars were irradiated for 10 s by an Er,Cr:YSGG laser. Enamel (E) specimens were etched with 37% H(3)PO(4) for 20, 40 or 60 s and dentin (D) specimens were etched for 15 or 30 s. All specimens were prepared for a standard shear bond strength (SBS) test (1 mm/min). Data were analyzed [ANOVA, Tukey post-hoc, a < 0.05)] and the failure mode was studied under SEM. Mean SBS+/-sd (MPa) for each group was 16.97 +/- 7.77 (E20s), 21.34 +/- 3.55 (E40s), 14.08 +/- 4.77 (E60s), 13.62 +/- 7.28 (D15s) and 13.15 +/- 6.25 (D30s). SBS for E40s was significantly higher than E60s (p = 0.023). No difference was noted between the dentin groups. SEM evaluation showed predominantly cohesive failure. Within the limits of this study, etching time significantly influenced the SBS of composite resin to laser-prepared enamel. SEM showed subsurface cracks, fissures, and deformities leading to predominantly cohesive failure in both enamel and dentin.
Metal transfer to femoral heads may result from impingement against the metallic acetabular shell following subluxation/dislocation, or when metallic debris enters the articulation zone. Such transfers roughen the head surface, increasing polyethylene wear in total hip replacements. Presently, we examined the surface roughness of retrieved femoral heads with metallic transfer. Profilometry revealed roughness averages in regions of metal transfer averaging 0.380 μm for CoCr and 0.294 μm for ZrO2 which were one order of magnitude higher than those from non-implanted controls. Scanning electron microscopy (SEM) revealed adherent transfers on these retrievals, with titanium presence confirmed by electron dispersive spectroscopy. Due to the concern for increased wear, metal transfer was induced on non-implanted heads, which were then articulated against flat polyethylene discs in multidirectional sliding wear tests. Increased polyethylene wear was associated with these specimens as compared to unaltered controls. SEM imaging provided visual evidence that the transfers remained adherent following the wear tests. Pre- and post-test roughness averages exceeded 1 μm for both the CoCr and ZrO2 heads. Overall, these results suggest that metal transfer increases the surface roughness of CoCr and ZrO2 femoral heads and that the transfers may remain adherent following articulation against polyethylene, leading to increased polyethylene wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.