In this work, we consider a group of robots working together to manipulate a rigid object to track a desired trajectory in SE(3). The robots have no explicit communication network among them, and they do not know the mass or friction properties of the object, or where they are attached to the object. However we assume they share data from a common IMU placed arbitrarily on the object. To solve this problem, we propose a decentralized adaptive control scheme wherein each agent maintains and adapts its own estimate of the object parameters in order to track a reference trajectory. We present an analysis of the controller's behavior, and show that all closed-loop signals remain bounded, and that the system trajectory will almost always (except for initial conditions on a set of measure zero) converge to the desired trajectory. We study the proposed controller's performance using numerical simulations of a manipulation task in 3D, as well as hardware experiments which demonstrate our algorithm on a planar manipulation task. These studies, taken together, demonstrate the effectiveness of the proposed controller even in the presence of numerous unmodeled effects, such as discretization errors and complex frictional interactions.
Abstract-Robots performing manipulation tasks must operate under uncertainty about both their pose and the dynamics of the system. In order to remain robust to modeling error and shifts in payload dynamics, agents must simultaneously perform estimation and control tasks. However, the optimal estimation actions are often not the optimal actions for accomplishing the control tasks, and thus agents trade between exploration and exploitation. This work frames the problem as a Bayesadaptive Markov decision process and solves it online using Monte Carlo tree search and an extended Kalman filter to handle Gaussian process noise and parameter uncertainty in a continuous space. MCTS selects control actions to reduce model uncertainty and reach the goal state nearly optimally. Certainty equivalent model predictive control is used as a benchmark to compare performance in simulations with varying process noise and parameter uncertainty.
In this work, we consider a group of robots working together to manipulate a rigid object to track a desired trajectory in SE(3). The robots do not know the mass or friction properties of the object, or where they are attached to the object. They can, however, access a common state measurement, either from one robot broadcasting its measurements to the team, or by all robots communicating and averaging their state measurements to estimate the state of their centroid. To solve this problem, we propose a decentralized adaptive control scheme wherein each agent maintains and adapts its own estimate of the object parameters in order to track a reference trajectory. We present an analysis of the controller's behavior, and show that all closed-loop signals remain bounded, and that the system trajectory will almost always (except for initial conditions on a set of measure zero) converge to the desired trajectory. We study the proposed controller's performance using numerical simulations of a manipulation task in 3D, as well as hardware experiments which demonstrate our algorithm on a planar manipulation task. These studies, taken together, demonstrate the effectiveness of the proposed controller even in the presence of numerous unmodeled effects, such as discretization errors and complex frictional interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.