Chemical additives used for hydraulic fracturing and matrix acidizing of oil reservoirs were reviewed and priority chemicals of concern needing further environmental risk assessment, treatment demonstration, or evaluation of occupational hazards were identified. We evaluated chemical additives used for well stimulation in California, the third largest oil producing state in the USA, by the mass and frequency of use, as well as toxicity. The most frequently used chemical additives in oil development were gelling agents, cross-linkers, breakers, clay control agents, iron and scale control agents, corrosion inhibitors, biocides, and various impurities and product stabilizers used as part of commercial mixtures. Hydrochloric and hydrofluoric acids, used for matrix acidizing and other purposes, were reported infrequently. A large number and mass of solvents and surface active agents were used, including quaternary ammonia compounds (QACs) and nonionic surfactants. Acute toxicity was evaluated and many chemicals with low hazard to mammals were identified as potentially hazardous to aquatic environments. Based on an analysis of quantities used, toxicity, and lack of adequate hazard evaluation, QACs, biocides, and corrosion inhibitors were identified as priority chemicals of concern that deserve further investigation.
Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shutin/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.
About CCSTCCST is a non-profit organization established in 1988 at the request of the California State Government and sponsored by the major public and private postsecondary institutions of California and affiliate federal laboratories in conjunction with leading private-sector firms. CCST's mission is to improve science and technology policy and application in California by proposing programs, conducting analyses, and recommending public policies and initiatives that will maintain California's technological leadership and a vigorous economy.
NoteAny opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for the project.
A blowout of the Sesnon Standard-25 well (SS-25; API 03700776) at the Aliso Canyon Underground Gas Storage Facility, first observed on October 23, 2015, eventually resulted in emission of nearly 100,000 tonnes of natural gas (mostly methane) to the atmosphere. Several thousand people were displaced from their homes as the blowout spanned 111 days. Seven attempts to gain pressure control and stop the gas flow by injection of heavy kill fluids through the wellhead failed, a process referred to as a "top kill." Introduction of drilling mud when a relief well milled through the casing of SS-25 at a depth of ∼8 400 ft ("bottom kill") succeeded in halting the gas flow on February 11, 2016. We carried out coupled well-reservoir numerical modeling using T2Well to assess why the top kills failed to control the blowout. T2Well couples a reservoir simulation in which porous media flow is described using Darcy's lawwith a discretized wellbore in which the Navier-Stokes momentum equation implemented via a drift-flux model (Shi et al., 2005) is used to describe multi-phase fluid transport to allow detailed process modeling of well blowouts and kill attempts. Modeling reveals the critical importance of well geometry in controlling flow dynamics and the corresponding success or failure of the kill attempts. Geometry plays a role in controlling where fluids can flow, e.g., when gas flow prevents liquid flow from entering the tubing from the annulus, but geometry also provides the opportunity for dead end regions to accumulate stagnant gas and liquid that can also affect kill attempts. Simulations show that follow-up fluid injections after the main kill attempts likely would have been effective to ensure that gas leakage remains stopped. T2Well is capable of simulating well kills and understanding the mechanisms behind well control failures and successes. Keywords: Aliso canyon, Gas leak, Well blowout, Well kill, Coupled wellreservoir processes, Numerical modeling, Wellbore modeling 100,000 tonnes of methane and several thousand tonnes of ethane emitted to the atmosphere (Conley et al., 2016, California Air Resources Board, 2016). Several thousand people were displaced from their homes as emitted gases and fumes (e.g., mercaptan odorant) went on for 111 days. Seven attempts failed to stop the flow by gaining pressure control through the injection of dense fluids through the wellhead, so-called top-kill attempts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.