Heterotrimeric G proteins are intracellular membrane-attached signal transducers involved in various cellular processes in both plants and animals. They consist of three subunits denoted as α, β and γ. The γ-subunits of the so-called AGG3 type, which comprise a transmembrane domain, are exclusively found in plants. In model species, these proteins have been shown to participate in the control of plant height, branching and seed size and could therefore impact the harvestable yield of various crop plants. Whether AGG3-type γ-subunits influence yield in temperate cereals like barley and wheat remains unknown. Using a transgenic complementation approach, we show here that the Scottish malting barley cultivar (cv.) Golden Promise carries a loss-of-function mutation in HvDep1, an AGG3-type subunit encoding gene that positively regulates culm elongation and seed size in barley. Somewhat intriguingly, agronomic field data collected over a 12-year period reveals that the HvDep1 loss-of-function mutation in cv. Golden Promise has the potential to confer either a significant increase or decrease in harvestable yield depending on the environment. Our results confirm the role of AGG3-type subunit-encoding genes in shaping plant architecture, but interestingly also indicate that the impact HvDep1 has on yield in barley is both genotypically and environmentally sensitive. This may explain why widespread exploitation of variation in AGG3-type subunit-encoding genes has not occurred in temperate cereals while in rice the DEP1 locus is widely exploited to improve harvestable yield.
Lodging is the process where crop plants fall over and lie on the ground due to strong winds and heavy precipitation. This problem reduces yield and increases the risk of fungal infections and pre-harvest germination. In order to avoid lodging, plant breeders utilize short-culm mutants, which often have a robust culm that can support the weight of a heavy spike. In barley (Hordeum vulgare L.), thousands of short-culm mutants have been isolated in breeding programs around the world. Our long-term goal is to reveal the genetic network underlying culm length, with the objective to provide an enlarged repertoire of genes and alleles suitable for future breeding of lodging resistant barley. In the present work we studied a group of allelic brh2 and ari-l mutants, which have a relatively strong semi-dwarf phenotype and are phenotypically similar to previously identified mutants deficient in brassinosteroid signalling or metabolism. The Brh2 gene is located in the centromeric region of chromosome 4H and we applied a candidate gene approach to identify the gene. Brh2 is orthologous to TUD1 in rice (Orysa sativa L.), which encodes a U-box E3 ubiquitin ligase. We identified one missense mutation, one nonsense mutation and four deletions of the complete Brh2 gene. The mutants could respond to exogenously applied brassinolide, which suggests that the apparent brassinosteroid deficient phenotype of barley brh2 and ari-l mutants is related to brassinosteroid metabolism rather than signalling. Keywords Ari-l • Brh2 • Heterotrimeric G protein • Lodging • TUD1 Abbreviations ari Breviaristatum brh Brachytic ert Erectoides GDP Guanosine-5′-diphosphate GTP Guanosine-5′-triphosphate RGS Regulator-of-G-protein-signalling sdw Semi-dwarf uzu Semi-brachytic * Mats Hansson
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.