Because of economic limitations, the cost-effective diagnosis of patients affected with rare microdeletion or microduplication syndromes is a challenge in developing countries. Here we report a sensitive, rapid, and affordable detection method that we have called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR). Our procedure is based on the finding of genomic regions with high homology to segments of the critical microdeletion/microduplication region. PCR amplification of both using the same primer pair, establishes competitive kinetics and relative quantification of amplicons, as happens in microsatellite-based Quantitative Fluorescence PCR. We used patients with two common microdeletion syndromes, the Williams-Beuren syndrome (7q11.23 microdeletion) and the 22q11.2 microdeletion syndromes and discovered that MQF-PCR could detect both with 100% sensitivity and 100% specificity. Additionally, we demonstrated that the same principle could be reliably used for detection of microduplication syndromes, by using patients with the Lubs (MECP2 duplication) syndrome and the 17q11.2 microduplication involving the NF1 gene. We propose that MQF-PCR is a useful procedure for laboratory confirmation of the clinical diagnosis of microdeletion/microduplication syndromes, ideally suited for use in developing countries, but having general applicability as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.