We investigate the trade-off between the robustness against random and targeted removal of nodes from a network. To this end we utilize the stochastic block model to study ensembles of infinitely large networks with arbitrary large-scale structures. We present results from numerical two-objective optimization simulations for networks with various fixed mean degree and number of blocks. The results provide strong evidence that three different blocks are sufficient to realize the best trade-off between the two measures of robustness, i.e. to obtain the complete front of Pareto-optimal networks. For all values of the mean degree, a characteristic three block structure emerges over large parts of the Pareto-optimal front. This structure can be often characterized as a core-periphery structure, composed of a group of core nodes with high degree connected among themselves and to a periphery of low-degree nodes, in addition to a third group of nodes which is disconnected from the periphery, and weakly connected to the core. Only at both extremes of the Pareto-optimal front, corresponding to maximal robustness against random and targeted node removal, a two-block core-periphery structure or a one-block fully random network are found, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.