High-quality lighting positively influences visual performance in humans. The experienced visual performance can be measured using desktop luminance and hence several lighting control systems have been developed for its quantification. However, the measurement devices that are used to monitor the desktop luminance in existing lighting control systems are obtrusive to the users. As an alternative, ceiling-based luminance projection sensors are being used recently as these are unobtrusive and can capture the direct task area of a user. The positioning of these devices on the ceiling requires to estimate the desktop luminance in the user's vertical visual field, solely using ceiling-based measurements, to better predict the experienced visual performance of the user. For this purpose, we present LUMNET, an approach for estimating desktop luminance with deep models through utilizing supervised and self-supervised learning. Our model learns visual representations from ceiling-based images, which are collected in indoor spaces within the physical vicinity of the user to predict average desktop luminance as experienced in a real-life setting. We also propose a self-supervised contrastive method for pre-training LUMNET with unlabeled data and we demonstrate that the learned features are transferable onto a small labeled dataset which minimizes the requirement of costly data annotations. Likewise, we perform experiments on domain-specific datasets and show that our approach significantly improves over the baseline results from prior methods in estimating luminance, particularly in the low-data regime. LUMNET is an important step towards learning-based technique for luminance estimation and can be used for adaptive lighting control directly on-device thanks to its minimal computational footprint with an added benefit of preserving user's privacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.