Identifying disease-associated susceptibility loci is one of the most pressing and crucial challenges in modeling complex diseases. Existing approaches to biomarker discovery are subject to several limitations including underpowered detection, neglect for variant interactions, and restrictive dependence on prior biological knowledge. Addressing these challenges necessitates more ingenious ways of approaching the “missing heritability” problem. This study aims to discover disease-associated susceptibility loci by augmenting previous genome-wide association study (GWAS) using the integration of random forest and cluster analysis. The proposed integrated framework is applied to a hepatitis B virus surface antigen (HBsAg) seroclearance GWAS data. Multiple cluster analyses were performed on (1) single nucleotide polymorphisms (SNPs) considered significant by GWAS and (2) SNPs with the highest feature importance scores obtained using random forest. The resulting SNP-sets from the cluster analyses were subsequently tested for trait-association. Three susceptibility loci possibly associated with HBsAg seroclearance were identified: (1) SNP rs2399971, (2) gene LINC00578, and (3) locus 11p15. SNP rs2399971 is a biomarker reported in the literature to be significantly associated with HBsAg seroclearance in patients who had received antiviral treatment. The latter two loci are linked with diseases influenced by the presence of hepatitis B virus infection. These findings demonstrate the potential of the proposed integrated framework in identifying disease-associated susceptibility loci. With further validation, results herein could aid in better understanding complex disease etiologies and provide inputs for a more advanced disease risk assessment for patients.
Background Identifying disease-associated susceptibility loci is one of the most pressing and crucial challenges in modeling complex diseases. Existing approaches to biomarker discovery are subject to several limitations including underpowered detection, neglect for variant interactions, and restrictive dependence on prior biological knowledge. Addressing these challenges necessitates more ingenious ways of approaching the “missing heritability” problem. Objectives This study aims to discover disease-associated susceptibility loci by augmenting previous genome-wide association study (GWAS) using the integration of random forest and cluster analysis. Methods The proposed integrated framework is applied to a hepatitis B virus surface antigen (HBsAg) seroclearance GWAS data. Multiple cluster analyses were performed on (1) single nucleotide polymorphisms (SNPs) considered significant by GWAS and (2) SNPs with the highest feature importance scores obtained using random forest. The resulting SNP-sets from the cluster analyses were subsequently tested for trait-association. Results Three susceptibility loci possibly associated with HBsAg seroclearance were identified: (1) SNP rs2399971, (2) gene LINC00578, and (3) locus 11p15. SNP rs2399971 is a biomarker reported in the literature to be significantly associated with HBsAg seroclearance in patients who had received antiviral treatment. The latter two loci are linked with diseases influenced by the presence of hepatitis B virus infection. Conclusion These findings demonstrate the potential of the proposed integrated framework in identifying disease-associated susceptibility loci. With further validation, results herein could aid in better understanding complex disease etiologies and provide inputs for a more advanced disease risk assessment for patients.
BackgroundIdentifying disease-associated susceptibility loci is one of the most pressing and crucial challenges in modeling complex diseases. Existing approaches to biomarker discovery are subject to several limitations including underpowered detection, neglect for variant interactions, and restrictive dependence on prior biological knowledge. Addressing these challenges necessitates more ingenious ways of approaching the “missing heritability” problem.ObjectivesThis study aims to discover disease-associated susceptibility loci by augmenting previous genome-wide association study (GWAS) using the integration of random forest and cluster analysis.MethodsThe proposed integrated framework is applied to a hepatitis B virus surface antigen (HBsAg) seroclearance GWAS data. Multiple cluster analyses were performed on (1) single nucleotide polymorphisms (SNPs) considered significant by GWAS and (2) SNPs with the highest feature importance scores obtained using random forest. The resulting SNP-sets from the cluster analyses were subsequently tested for trait-association. ResultsThree susceptibility loci possibly associated with HBsAg seroclearance were identified: (1) SNP rs2399971, (2) gene LINC00578, and (3) locus 11p15. SNP rs2399971 is a biomarker reported in the literature to be significantly associated with HBsAg seroclearance in patients who had received antiviral treatment. The latter two loci are linked with diseases influenced by the presence of hepatitis B virus infection.ConclusionThese findings demonstrate the potential of the proposed integrated framework in identifying disease-associated susceptibility loci. With further validation, results herein could aid in better understanding complex disease etiologies and provide inputs for a more advanced disease risk assessment for patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.