Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe–4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air.
Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival. This recently discovered yet globally significant process regulates the composition of the atmosphere, enhances soil biodiversity, and drives primary production in certain extreme environments. Atmospheric H2 oxidation has been attributed to still uncharacterised members of the [NiFe]-hydrogenase superfamily. However, it is unresolved how these enzymes overcome the extraordinary catalytic challenge of selectively oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2, and how the derived electrons are transferred to the respiratory chain. Here we determined the 1.52 angstroms resolution CryoEM structure of the mycobacterial hydrogenase Huc and investigated its mechanism by integrating kinetics, electrochemistry, spectroscopy, mass spectrometry, and molecular dynamics simulations. Purified Huc is an oxygen-insensitive enzyme that couples the oxidation of atmospheric H2 at its large subunit to the hydrogenation of the respiratory electron carrier menaquinone at its small subunit. The enzyme uses a narrow hydrophobic gas channel to selectively bind atmospheric H2 at the expense of O2, while three [3Fe-4S] clusters and their unusual ligation by a D-histidine modulate the electrochemical properties of the enzyme such that atmospheric H2 oxidation is energetically feasible. Huc forms an 833 kDa complex composed of an octamer of catalytic subunits around a membrane-associated central stalk, which extracts and transports menaquinone a remarkable 94 angstroms from the membrane, enabling its reduction. These findings provide a mechanistic basis for the biogeochemically and ecologically critical process of atmospheric H2 oxidation. Through the first characterisation of a group 2 [NiFe]-hydrogenase, we also uncover a novel mode of energy coupling dependent on long-range quinone transport and pave way for the development of biocatalysts that oxidize H2 in ambient air.
[FeFe] hydrogenases, metalloenzymes catalyzing proton/dihydrogen interconversion, have attracted intense attention due to their remarkable catalytic properties and (bio-)technological potential for a future hydrogen economy. In order to unravel the factors enabling their efficient catalysis, both their unique organometallic cofactors and protein structural features, i.e., “outer-coordination sphere” effects have been intensively studied. These structurally diverse enzymes are divided into distinct phylogenetic groups, denoted as Group A–D. Prototypical Group A hydrogenases display high turnover rates (104–105 s–1). Conversely, the sole characterized Group D representative, Thermoanaerobacter mathranii HydS (TamHydS), shows relatively low catalytic activity (specific activity 10–1 μmol H2 mg–1 min–1) and has been proposed to serve a H2-sensory function. The various groups of [FeFe] hydrogenase share the same catalytic cofactor, the H-cluster, and the structural factors causing the diverging reactivities of Group A and D remain to be elucidated. In the case of the highly active Group A enzymes, a well-defined proton transfer pathway (PTP) has been identified, which shuttles H+ between the enzyme surface and the active site. In Group D hydrogenases, this conserved pathway is absent. Here, we report on the identification of highly conserved amino acid residues in Group D hydrogenases that constitute a possible alternative PTP. We varied two proposed key amino acid residues of this pathway (E252 and E289, TamHydS numbering) via site-directed mutagenesis and analyzed the resulting variants via biochemical and spectroscopic methods. All variants displayed significantly decreased H2-evolution and -oxidation activities. Additionally, the variants showed two redox states that were not characterized previously. These findings provide initial evidence that these amino acid residues are central to the putative PTP of Group D [FeFe] hydrogenase. Since the identified residues are highly conserved in Group D exclusively, our results support the notion that the PTP is not universal for different phylogenetic groups in [FeFe] hydrogenases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.