The historical view of β-lactams as ineffective antimycobacterials has given way to growing interest in the activity of this class against Mycobacterium tuberculosis (Mtb) in the presence of a β-lactamase inhibitor. However, most antimycobacterial βlactams kill Mtb only or best when the bacilli are replicating. Here, a screen of 1904 β-lactams led to the identification of cephalosporins substituted with a pyrithione moiety at C3′ that are active against Mtb under both replicating and nonreplicating conditions, neither activity requiring a β-lactamase inhibitor. Studies showed that activity against nonreplicating Mtb required the in situ release of the pyrithione, independent of the known class A β-lactamase, BlaC. In contrast, replicating Mtb could be killed both by released pyrithione and by the parent β-lactam. Thus, the antimycobacterial activity of pyrithionecontaining cephalosporins arises from two mechanisms that kill mycobacteria in different metabolic states.
The success of Mycobacterium tuberculosis (Mtb) as a pathogen depends on
the redundant and complex mechanisms it has evolved for resisting
nitrosative and oxidative stresses inflicted by host immunity. Improving
our understanding of these defense pathways can reveal vulnerable
points in Mtb pathogenesis. In this study, we combined genetic, structural,
computational, biochemical, and biophysical approaches to identify
a novel enzyme class represented by Rv2466c. We show that Rv2466c
is a mycothiol-dependent nitroreductase of Mtb and can reduce the
nitro group of a novel mycobactericidal compound using mycothiol as
a cofactor. In addition to its function as a nitroreductase, Rv2466c
confers partial protection to menadione stress.
As part of a program to explore the chemistry of β-lactams and their derivatives, we prepared a focused set of benzazetidine, indoline, and indole heterocycles, as well as flexible unconstrained variations of the four-membered heterocyclic compounds. These analogues mimic the threedimensional shape of cephalosporins but are not prone to covalent binding via ring opening. Although these analogues were inactive against the ESKAPE pathogens and Mtb, they represent unique and underexplored chemotypes for future biological screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.