Water pollution is an issue of great concern worldwide, and it can be broadly divided into three main categories, that is, contamination by organic compounds, inorganic compounds e.g., heavy metals , and microorganisms. In recent years, the number of research studies concerning the use of efficient processes to clean up and minimize the pollution of water bodies has been increasing. In this context, the use of bioremediation processes for the removal of toxic metals from aqueous solutions is gaining considerable attention. "ioremediation can be defined as the ability of certain biomolecules or types of biomass to bind and concentrate selected ions or other molecules present in aqueous solutions. "ioremediation using microorganisms shows great potential for future development due to its environmental compatibility and possible cost-effectiveness. " wide range of microorganisms, including bacteria, fungi, yeasts, and algae, can act as biologically active methylators, which are able to at least modify toxic species. Many microbial detoxification processes involve the efflux or exclusion of metal ions from the cell, which in some cases can result in high local concentrations of metals at the cell surface, where they can react with biogenic ligands and precipitate. "lthough microorganisms cannot destroy metals, they can alter their chemical properties via a surprising array of mechanisms. The main purpose of this chapter is to provide an update on the recent literature concerning the strategies available for the remediation of metal-contaminated water bodies using microorganisms and to critically discuss their main advantages and weaknesses. The focus is on the heavy metals associated with environmental contamination, for © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.instance, lead Pb , cadmium Cd , and chromium Cr , which are potentially hazardous to ecosystems. The types of microorganisms that are used in bioremediation processes due to their natural capacity to biosorb toxic heavy metal ions are discussed in detail. This chapter summarizes existing knowledge on various aspects of the fundamentals and applications of bioremediation and critically reviews the obstacles to its commercial success and future perspectives.Keywords: Metals, microorganisms, bioremediation, polluted water
. IntroductionEnvironmental contamination by heavy metals from anthropogenic and industrial activities has caused considerable irreparable damage to aquatic ecosystems. Sources include the mining and smelting of ores, effluent from storage batteries and automobile exhaust, and the manufacturing and inadequate use of fertilizers, pesticides, and many others. The metals and metalloids that contaminate waters and are most commonly found in the environment include lead, chromium, mercury, ...