This in vitro study evaluated the effectiveness of whitening dentifrices for the removal of extrinsic tooth stains. Twenty dental blocks (4 x 4 mm), including enamel and dentine, removed from freshly extracted bovine incisors, were randomly divided into 4 groups: G1 -distilled water, G2 -Colgate, G3 -Crest Extra Whitening and G4 -Rapid White. In all specimens, the dentin was covered with colorless nail polish, and the enamel was left exposed. Next, the specimens were immersed in a solution of black tea, which was changed every 24 h, for a period of 6 days. After this period, a photo-reflectance reading was taken (Time 1) with a spectrometer. The stained specimens were then submitted to linear brushing movements (5,000 cycles) using brushes (Oral B-Soft) coupled to an automatic toothbrushing machine, under a static axial load of 200 g and with a speed of 4 movements/second, at 37°C, with the dentifrice or water being injected every 60 s. When toothbrushing ended, a second photo-reflectance reading was taken (Time 2). The results were submitted to two-criteria analysis of variance (ANOVA) and to the Tukey test (α = 0.05). When the two times for a same group were compared, Time 2 presented the highest reflectance values with statistical difference only for G3 and G4. Among the dentifrices tested, only the Rapid White group differed from the control group, presenting the highest reflectance values. Only the whitening dentifrice Rapid White was effective for the removal of extrinsic stains.
Bleached enamel was susceptible to red-wine staining at both 30 and 150 min after bleaching procedures, whereas coffee did not interfere with the bleaching process.
The halogen lamp presented the same or higher efficacy than non-activated bleaching, which had a longer gel contact period. When hydrogen peroxide was used, a decrease in reflectance values was observed 30 days after the end of bleaching.
High concentrations of hydrogen peroxide can cause adverse effects on composition and structure of teeth. However, the addition of calcium and fluoride in bleaching agents may reduce enamel demineralization.Objective:To evaluate chemical changes of sound and demineralized enamels submitted to high concentrations of hydrogen peroxide containing fluoride (F) or calcium (Ca).Material and Methods:Enamel blocks of bovine incisors with standard dimensions were obtained and half of them were submitted to pH-cycling to promote initial enamel caries lesions. Sound and demineralized enamel samples were divided into (n=10): (C) Control (no whitening treatment); (HP) 35% hydrogen peroxide; and two experimental groups: (HPF) 35% HP+0.2% F and (HPC) 35% HP+0.2% Ca. Experimental groups were submitted to two in-office bleaching sessions and agents were applied 3 times for 15 min to each session. The control group was kept in remineralizing solution at 37°C during the bleaching treatment. The surface mineral content of sound and demineralized enamels was determined through Fourier Transform Raman spectroscopy (FT-Raman), Energy dispersive Micro X-ray fluorescence spectroscopy (μ-EDXRF); and the subsurface, through cross-sectional microhardness (CSMH). In addition, polarized light microscopy (PLM) images of enamel subsurface were observed.Results:According to three-way (FT-Raman and μ-EDXRF analyses) or two-way analysis of variance (ANOVA) (CSMH) and Tukey test (α=5%), the calcium or fluoride added to high-concentrated bleaching agents increased phosphate and carbonate concentrations on sound and demineralized enamels (p<0.05). However, HPC and HPF were unable to completely reverse the subsurface mineral loss promoted by bleaching on sound and demineralized enamels. The calcium/ phosphate (Ca/P) ratio of sound enamel decreased after HP treatment (p<0.001).Conclusion:Even though experimental bleaching agents with Ca or F reduced mineral loss for both sound and demineralized enamel surfaces, these agents were unable to reverse the enamel subsurface demineralization.
This study evaluated Streptococcus mutans biofilm adhesion on the surface of three composite resins (nanofilled, Filtek Z350, 3M ESPE, Salt Lake City, UT, USA; nanohybrid, Vit-1-escence, Ultradent Products, South Jordan, UT, USA; and microhybrid, Esthet X, Dentsply, Milford, DE, USA) following different finishing and polishing techniques. Sixty standardized samples (6 × 3 mm) of each composite were produced and randomly divided into three finishing and polishing treatments (n=20): 1) control group: composite resin surface in contact with Mylar matrix strips with no finishing or polishing performed, 2) Sof-Lex aluminum oxide disc technique (3M ESPE, and 3) carbide bur finishing and Astrobrush polishing technique (Ultradent). Half the samples of each group were incubated in human saliva for 1 hour, and all the samples were subjected to S mutans (ATCC 35688) biofilm development. The mean log of CFU/mL present in the S mutans biofilm was calculated, and data were statistically analyzed by three-way analysis of variance and the Tukey test (p<0.05). Human saliva incubation promoted a significant increase of bacterial adherence on all three of the composites' surfaces, regardless of the polishing treatment performed (p<0.05). Of the three, the nanofilled composite (Filtek Z350) had the lowest bacterial adherence with each of the finishing and polishing techniques despite the presence or absence of human saliva (p<0.05). Mylar matrix strips (control group) promoted the lowest bacterial adhesion on the surface of the microhybrid and nanofilled composites in the absence of human saliva.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.