The gastrointestinal tracts of most herbivorous mammals are colonized by symbiotic ciliates of the subclass Trichostomatia, which form a well-supported monophyletic group, currently composed by ∼1,000 species, 129 genera, and 21 families, distributed into three orders, Entodiniomorphida, Macropodiniida, and Vestibuliferida. In recent years, trichostomatid ciliates have been playing a part in many relevant functional studies, such as those focusing in host feeding efficiency optimization and those investigating their role in the gastrointestinal methanogenesis, as many trichostomatids are known to establish endosymbiotic associations with methanogenic Archaea. However, the systematics of trichostomatids presents many inconsistencies. Here, we stress the importance of more taxonomic works, to improve classification schemes of this group of organisms, preparing the ground to proper development of such relevant applied works. We will present a historical review of the systematics of the subclass Trichostomatia highlighting taxonomic problems and inconsistencies. Further on, we will discuss possible solutions to these issues and propose future directions to leverage our comprehension about taxonomy and evolution of these symbiotic microeukaryotes.
The species composition, prevalence, and average relative abundance of rumen ciliates were analyzed in 16 Brazilian sheep. 28 species of ciliates were identified belonging to 3 families: Isotrichidae, Ophryoscolecidae, and Parentodiniidae. Among these ciliates, Entodinium alces, Metadinium esalqum, and M. rotundatum were found for the first time in sheep, and other 12 species for the first time in Brazilian sheep. Different morphotypes of parentodiniid ciliates were identified in 7 of the 16 sheep analyzed and this is the second report of this family in ruminants. The species Entodinium contractum was redescribed based on the new data on the general morphological features; for the first time, we described the oral infraciliature, which in this species is of the Entodinium-type. In this species, it is noteworthy that the prominent vestibular polybrachykinety can be used as an important identifying characteristic.
The family Ophryoscolecidae (Ciliophora, Entodiniomorphida) constitutes a diverse and monophyletic group of symbiotic ciliates of herbivorous mammals. The family includes approximately 200 species, distributed in three subfamilies and sixteen genera. The subfamily Diplodiniinae is the most diverse group in Ophryoscolecidae and comprises the genus Ostracodinium, which includes species with two retractable ciliary zones in the anterior body portion, a broad skeletal plate covering almost all the right surface of the body and a variable number of contractile vacuoles. The genus currently comprises 28 species, classified according to body size and shape, position and shape of the nuclear apparatus, number and position of contractile vacuoles, and number and shape of caudal projections. The present study performs a systematic review of the genus Ostracodinium, based on morphological and molecular data, and provides data about geographic distribution and hosts of each species.
Ruminants digest plant biomass more efficiently than monogastric animals due to their symbiotic relationship with a complex microbiota residing in the rumen environment. What remains unclear is the relationship between the rumen microbial taxonomic and functional composition and feed efficiency (FE), especially in crossbred dairy cattle (Holstein x Gyr) raised under tropical conditions. In this study, we selected twenty-two F1 Holstein x Gyr heifers and grouped them according to their residual feed intake (RFI) ranking, high efficiency (HE) (n = 11) and low efficiency (LE) (n = 11), to investigate the effect of FE on the rumen microbial taxa and their functions. Rumen fluids were collected using a stomach tube apparatus and analyzed using amplicon sequencing targeting the 16S (bacteria and archaea) and 18S (protozoa) rRNA genes. Alpha-diversity and beta-diversity analysis revealed no significant difference in the rumen microbiota between the HE and LE animals. Multivariate analysis (sPLS-DA) showed a clear separation of two clusters in bacterial taxonomic profiles related to each FE group, but in archaeal and protozoal profiles, the clusters overlapped. The sPLS-DA also revealed a clear separation in functional profiles for bacteria, archaea, and protozoa between the HE and LE animals. Microbial taxa were differently related to HE (e.g., Howardella and Shuttleworthia) and LE animals (e.g., Eremoplastron and Methanobrevibacter), and predicted functions were significatively different for each FE group (e.g., K03395—signaling and cellular process was strongly related to HE animals, and K13643—genetic information processing was related to LE animals). This study demonstrates that differences in the rumen microbiome relative to FE ranking are not directly observed from diversity indices (Faith’s Phylogenetic Diversity, Pielou’s Evenness, Shannon’s diversity, weighted UniFrac distance, Jaccard index, and Bray–Curtis dissimilarity), but from targeted identification of specific taxa and microbial functions characterizing each FE group. These results shed light on the role of rumen microbial taxonomic and functional profiles in crossbred Holstein × Gyr dairy cattle raised in tropical conditions, creating the possibility of using the microbial signature of the HE group as a biological tool for the development of biomarkers that improve FE in ruminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.