Bone tissue has a significant potential for healing, which involves a significant the interplay between bone and immune cells. While fracture healing represents a useful model to investigate endochondral bone healing, intramembranous bone healing models are yet to be developed and characterized. In this study, a micro-computed tomography, histomorphometric and molecular (RealTimePCRarray) characterization of post tooth-extraction alveolar bone healing was performed on C57Bl/6 WT mice. After the initial clot dominance (0h), the development of a provisional immature granulation tissue is evident (7d), characterized by marked cell proliferation, angiogenesis and inflammatory cells infiltration; associated with peaks of growth factors (BMP-2-4-7,TGFβ1,VEGFa), cytokines (TNFα, IL-10), chemokines & receptors (CXCL12, CCL25, CCR5, CXCR4), matrix (Col1a1-2, ITGA4, VTN, MMP1a) and MSCs (CD105, CD106, OCT4, NANOG, CD34, CD146) markers expression. Granulation tissue is sequentially replaced by more mature connective tissue (14d), characterized by inflammatory infiltrate reduction along the increased bone formation, marked expression of matrix remodeling enzymes (MMP-2-9), bone formation/maturation (RUNX2, ALP, DMP1, PHEX, SOST) markers, and chemokines & receptors associated with healing (CCL2, CCL17, CCR2). No evidences of cartilage cells or tissue were observed, strengthening the intramembranous nature of bone healing. Bone microarchitecture analysis supports the evolving healing, with total tissue and bone volumes as trabecular number and thickness showing a progressive increase over time. The extraction socket healing process is considered complete (21d) when the dental socket is filled by trabeculae bone with well-defined medullary canals; it being the expression of mature bone markers prevalent at this period. Our data confirms the intramembranous bone healing nature of the model used, revealing parallels between the gene expression profile and the histomorphometric events and the potential participation of MCSs and immune cells in the healing process, supporting the forthcoming application of the model for the better understanding of the bone healing process.
Periodontitis (PD) and rheumatoid arthritis (RA) have been found to be clinically associated and to share the chronic nature of the inflammatory reaction associated with bone resorption activity. However, the mechanisms underlying such association are unknown. Therefore, we examined the basis of Actinobacillus actinomycetemcomitans-and Porphyromonas gingivalis-induced PD and pristane-induced arthritis (PIA) interaction in mice. Higher severity PD in the genetically inflammation prone acute inflammatory reactivity maximum (AIRmax) mice strain was associated with higher levels of TNF-a, IL-1b, IL-17, matrix metalloproteinase (MMP)-13, and RANKL, whereas PD/PIA co-induction resulted in even higher levels of IL-1b, IFN-g, IL-17, RANKL, and MMP-13 levels. Conversely, PD/PIA co-induction in AIRmin strain did not alter the course of both pathologies. PIA/PD co-induction resulted in altered expression of T-cell subsets transcription factors expression, with T-bet and RORg levels being upregulated, whereas GATA-3 levels were unaltered. Interestingly, PIA induction resulted in alveolar bone loss, such response being highly dependent on the presence of commensal oral bacteria. No differences were found in PIA severity parameters by PD co-induction. Our results show that the interaction between experimental PD and arthritis in mice involves a shared hyper-inflammatory genotype and functional interferences in innate and adaptive immune responses.
Septic arthritis is an inflammatory disease of the joints that is started by an infection whose most common agent is Staphylococcus aureus. In this review we discuss some of the most arthritogenic bacterial factors and the contribution of innate and specific immune mechanisms to joint destruction. Special emphasis is given to the induction of experimental arthritis by S. aureus in mice. The improvement of therapy by association of antibiotics with down-modulation of immunity is also included.
The relevance of IL-33 and its receptor ST2 for bone remodeling is not well-defined. Our aim was to assess the role and underlying mechanisms of IL-33/ST2 in mechanically induced bone remodeling. BALB/c (wild type) and ST2 deficient (St2(-/-)) mice were subjected to mechanical loading in alveolar bone. Microtomography, histology, and real-time quantitative PCR were performed to analyze bone parameters, apoptosis and bone cell counts, and expression of bone remodeling markers, respectively. MC3T3-E1 osteoblastic cells and bone marrow cells were used to verify if mechanical force triggered IL-33 and ST2 expression as well as the effects of IL-33 on osteoclast differentiation and activity. Mechanical loading increased the expression of IL-33 and ST2 in alveolar bone in vivo and in osteoblastic cells in vitro. St2(-/-) mice had increased mechanical loading-induced bone resorption, number of osteoclasts, and expression of proresorptive markers. In contrast, St2(-/-) mice exhibited reduced numbers of osteoblasts and apoptotic cells in periodontium and diminished expression of osteoblast signaling molecules. In vitro, IL-33 treatment inhibited osteoclast differentiation and activity even in the presence of receptor activator of NF-κB ligand. IL-33 also increased the expression of pro-apoptotic molecules, including Bcl-2-associated X protein (BAX), cell-surface Fas receptor (FAS), FASL, FAS-associated death domain, tumor necrosis factor-related apoptosis-inducing ligand, and BH3 interacting-domain death (BID). Overall, these findings suggest that IL-33/ST2 have anti-osteoclastogenic effects and reduce osteoclast formation and activity by inducing their apoptosis.
Bone healing depends of a transient inflammatory response, involving selective migration of leukocytes under the control of chemokine system. CCR2 has been regarded as an essential receptor for macrophage recruitment to inflammation and healing sites, but its role in the intramembranous bone healing on craniofacial region remains unknown. Therefore, we investigated the role of CCR2 on F4/80+ cells migration and its consequences to the intramembranous healing outcome. C57BL/6 wild-type (WT) and CCR2KO mice were subjected to upper right incisor extraction, followed by micro-computed tomography, histological, immunological, and molecular analysis along experimental periods. CCR2 was associated with F4/80+ cells influx to the intramembranous bone healing in WT mice, and CCR2+ cells presented a kinetics similar to F4/80+ and CCR5+ cells. By contrast, F4/80+ and CCR5+ cells were significantly reduced in CCR2KO mice. The absence of CCR2 did not cause major microscopic changes in healing parameters, while molecular analysis demonstrated differential genes expression of several molecules between CCR2KO and WT mice. The mRNA expression of TGFB1, RUNX2, and mesenchymal stem cells markers (CXCL12, CD106, OCT4, NANOG, and CD146) was decreased in CCR2KO mice, while IL6, CXCR1, RANKL, and ECM markers (MMP1, 2, 9, and Col1a2) were significantly increased in different periods. Finally, immunofluorescence and FACS revealed that F4/80+ cells are positive for both CCR2 and CCR5, suggesting that CCR5 may account for the remaining migration of the F4/80+ cells in CCR2KO mice. In summary, these results indicate that CCR2+ cells play a primary role in F4/80+ cells migration along healing in intramembranous bones, but its deficiency does not critically impact healing outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.