DXA-measured ASMI is not influenced by ascites or LLE in cirrhotic patients; can diagnose low skeletal muscle/sarcopenia; and predicts mortality, particularly when combined with HGS.
AIMTo evaluate the prognostic value of the phase angle (PA) obtained from bioelectrical impedance analysis (BIA) for mortality prediction in patients with cirrhosis.METHODSIn total, 134 male cirrhotic patients prospectively completed clinical evaluations and nutritional assessment by BIA to obtain PAs during a 36-mo follow-up period. Mortality risk was analyzed by applying the PA cutoff point recently proposed as a malnutrition marker (PA ≤ 4.9°) in Kaplan-Meier curves and multivariate Cox regression models.RESULTSThe patients were divided into two groups according to the PA cutoff value (PA > 4.9°, n = 73; PA ≤ 4.9°, n = 61). Weight, height, and body mass index were similar in both groups, but patients with PAs > 4.9° were younger and had higher mid-arm muscle circumference, albumin, and handgrip-strength values and lower severe ascites and encephalopathy incidences, interleukin (IL)-6/IL-10 ratios and C-reactive protein levels than did patients with PAs ≤ 4.9° (P ≤ 0.05). Forty-eight (35.80%) patients died due to cirrhosis, with a median of 18 mo (interquartile range, 3.3-25.6 mo) follow-up until death. Thirty-one (64.60%) of these patients were from the PA ≤ 4.9° group. PA ≤ 4.9° significantly and independently affected the mortality model adjusted for Model for End-Stage Liver Disease score and age (hazard ratio = 2.05, 95%CI: 1.11-3.77, P = 0.021). In addition, Kaplan-Meier curves showed that patients with PAs ≤ 4.9° were significantly more likely to die.CONCLUSIONIn male patients with cirrhosis, the PA ≤ 4.9° cutoff was associated independently with mortality and identified patients with worse metabolic, nutritional, and disease progression profiles. The PA may be a useful and reliable bedside tool to evaluate prognosis in cirrhosis.
Gut microbiota composition is influenced by environmental factors and has been shown to impact body metabolism. Objective: To assess the gut microbiota profile before and after Roux-en-Y gastric bypass (RYGB) and the correlation with food intake and postoperative type 2 diabetes remission (T2Dr). Design: Gut microbiota profile from obese diabetic women was evaluated before (n = 25) and 3 (n = 20) and 12 months (n = 14) after RYGB, using MiSeq Illumina-based V4 bacterial 16S rRNA gene profiling. Data on food intake (7-day record) and T2Dr (American Diabetes Association (ADA) criteria) were recorded. Results: Preoperatively, the abundance of five bacteria genera differed between patients with (57%) and without T2Dr (p < 0.050). Preoperative gut bacteria genus signature was able to predict the T2Dr status with 0.94 accuracy ROC curve (receiver operating characteristic curve). Postoperatively (vs. preoperative), the relative abundance of some gut bacteria genera changed, the gut microbial richness increased, and the Firmicutes to Bacteroidetes ratio (rFB) decreased (p < 0.05) regardless of T2Dr. Richness levels was correlated with dietary profile pre and postoperatively, mainly displaying positive and inverse correlations with fiber and lipid intakes, respectively (p < 0.05). Conclusions: Gut microbiota profile was influenced by RYGB and correlated with diet and T2Dr preoperatively, suggesting the possibility to assess its composition to predict postoperative T2Dr.
In recent decades, experimental and clinical studies have associated the development of obesity with the composition of the gut microbiota. Mechanisms potentially involved in the contribution of gut microbiota to body weight gain include changes in energy extraction from the diet and the modulation of lipid metabolism, endocrine functions, and the immune system. The host's specific genetic heritage, the type and amount of food intake, chronic inflammation, reduced body energy expenditure, and exposure to obesogenic pollutants are also potential contributing factors. The pathophysiological processes involved in the relationship between gut microbiota and obesity are not fully understood, and further studies are needed to establish whether differences in gut bacterial diversity between obese and normal body weight individuals are the cause or a consequence of obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.