This work proposes the production of Cu-Sn alloy coatings with anticorrosive properties, using an environmentally non-aggressive bath. The coatings were electrodeposited on carbon steel substrate AISI 1020 using an electrolyte containing CuCl 2 and SnCl 2 , and sodium tartrate as the complexant agent. The produced coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICPOES) and electrochemical impedance spectroscopy (EIS). The film showing the highest corrosion resistance was obtained using j = 100 Am -2 . This coating was composed by 95.18 % m/m Cu and 4.83 % m/m Sn, and presented a uniform surface, without defects and small grain sizes. These characteristics probably contributed to the formation of Cu-Sn protective film onto steel substrate from a tartrate bath.
This work aims evaluate the use of biocides in the microbiologically-influenced corrosion (MIC) of AISI 1020 carbon steel by sulfate-reducing bacteria (SRB) in artificial seawater. A natural biocide (garlic oil) and a commercial biocide (glutaraldehyde) were used to control the corrosion caused by these bacteria in artificial seawater. Microbial growth on the steel surface was evaluated by quantifying the sessile SRB using the most probable number (MPN) method. The action of biocides in the biocorrosion process was studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The biofilm formation and the corrosion products on the steel surface were observed by scanning electron microscopy (SEM). The results showed that, although it was not able to inhibit the growth of sessile SRB completely, garlic oil showed a greater reduction in the corrosion process when compared to glutaraldehyde, indicating its possible application as a natural biocide under these conditions.
RESUMO Os problemas relacionados à corrosão são frequentes, podendo ocorrer nas mais variadas áreas, tais como, nas indústrias química, petroquímica, naval, de construção civil e automobilística, dentre outros setores produtivos. Portanto, métodos para prevenir a corrosão devem ser empregados para evitar a perda de materiais e o uso de revestimentos metálicos tem servido bastante a este propósito. A produção de revestimentos metálicos permite modificar a superfície do substrato levando à formação de um material funcional que apresenta as propriedades e características desejadas, no caso, resistência à corrosão. Contudo, esses revestimentos são geralmente produzidos usando banhos tóxicos a base de cianeto, o que eleva o custo do processo devido ao tratamento posterior dos rejeitos gerados. O presente trabalho propõe um estudo inicial para a produção de revestimentos de ligas de Cu-Sn com propriedades anticorrosivas, a partir de banho eletrolítico menos agressivo, apresentando diferentes concentrações iônicas de cobre e estanho. Os revestimentos foram eletrodepositados em substrato de aço-carbono, utilizando eletrólitos ácidos contendo CuCl2, SnCl2 e glicina. Estes revestimentos foram posteriormente caracterizados através das técnicas de microscopia eletrônica de varredura (MEV), espectroscopia de raios X por energia dispersiva (EDS), espectroscopia de impedância eletroquímica (EIE) e polarização potenciodinâmica. Os resultados de EIE mostraram que os filmes produzidos com maiores teores de cobre apresentaram um aumento nos valores da resistência de transferência de carga (Rtc). Contudo, os ensaios de polarização mostraram que estes filmes não atuaram como revestimentos protetores. As análises morfológicas evidenciaram a formação de revestimentos porosos, o que pode explicar seu pobre comportamento eletroquímico.
This work reports the production of low-tin Cu-Sn alloy coatings on carbon steel substrates using a bath containing CuCl 2 , SnCl 2 , and sodium citrate. In the first part of this study, the coatings were electrodeposited by direct and simple pulse current processes (DC and SPC, respectively). Different current density values were used, while the pulse frequency and duty cycle remained constant. Independent of the current mode used, low-tin Cu-Sn coatings, showing globular surface morphology and Cu 6 Sn 5 as the main compositional phase, were produced. Both the current mode and the applied current density affected the anticorrosive properties of the coatings. The most protective DC and SPC coatings, showing Sn content < 3 wt.% and compact morphology, were prepared using j = 80 A m -2 and j c = 167 A m -2 , respectively. High charge transfer resistance values were verified even after immersion for 24 h in 0.5 mol L -1 NaCl solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.