RESUMENLa adopción de sistemas recomendadores en ambientes virtuales de aprendizaje se está convirtiendo en una alternativa; para lograr la adaptación automática requerida, para atender las necesidades de aprendizaje de los estudiantes. Con los datos de interacción, que proveen estos ambientes es posible encontrar indicadores que con la aplicación de técnicas de minería de datos y aprendizaje automático se pueda identificar información relevante, para la definición de recomendaciones. En esta investigación, hemos aplicado técnicas de aprendizaje no supervisado, para la identificación de patrones comunes de interacción con los foros disponibles en un curso de la plataforma OpenACS/dotLRN. Esto facilitará la definición de recomendaciones que ayuden a mejorar la experiencia de aprendizaje de los estudiantes.Palabras clave: sistemas adaptativos de educación, OpenACS/dotLRN, modelado de usuario, minería de datos y aprendizaje automático, técnicas de agrupamiento automático (del inglés "clustering"), recomendaciones.
ABSTRACTRecommender systems in learning virtual environments are increasingly becoming a feasible approach to provide the adaptive support required to attend students' learning needs. With interaction
Medical records constitute an important source knowledge. Millions of data records can be processed looking for patterns using artificial intelligence and machine learning. Thus, the present research aims to identify patterns in gynecologic data. The dataset used includes 1251 records related to women's diseases, it contains aspects such as age, sicknesses, the contraceptive method used, and pathologic history, among others. The methodology applied in this work allowed the management of key aspects such as data understanding, preprocessing, modeling, and evaluation. Three unsupervised algorithms have been applied: k-means, DBSCAN, and Hierarchical Clustering. Silhouette metric has been used to evaluate the quality of each cluster. Results show that the best silhouette value was 0.73 and 9 clusters, obtained with DBSCAN. The outcomes obtained constitute an important contribution to identifying the most common genital infectious diseases that influence the identification of pattern in each cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.