Microglia originate from yolk sac-primitive macrophages and auto-proliferate into adulthood without replacement by bone marrow-derived circulating cells. In inflammation, stroke, aging, or infection, microglia have been shown to contribute to brain pathology in both deleterious and beneficial ways, which have been studied extensively. However, less is known about their role in the healthy adult brain. Astrocytes and oligodendrocytes are widely accepted to strongly contribute to the maintenance of brain homeostasis and to modulate neuronal function. On the other hand, contribution of microglia to cognition and behavior is only beginning to be understood. The ability to probe their function has become possible using microglial depletion assays and conditional mutants. Studies have shown that the absence of microglia results in cognitive and learning deficits in rodents during development, but this effect is less pronounced in adults. However, evidence suggests that microglia play a role in cognition and learning in adulthood and, at a cellular level, may modulate adult neurogenesis. This review presents the case for repositioning microglia as key contributors to the maintenance of homeostasis and cognitive processes in the healthy adult brain, in addition to their classical role as sentinels coordinating the neuroinflammatory response to tissue damage and disease.
Methylmercury (MeHg) exposure is a serious problem of public health, especially in the Amazon. Exposure in riverine populations is responsible for neurobehavioral abnormalities. It was hypothesized that consumption of Amazonian fruits could protect by reducing mercury accumulation. This work analyzed the effects of commercial samples of Euterpe oleracea (EO) for human consumption (10 μL/g) against MeHg i.p. exposure (2.5 mg/Kg), using neurobehavioral (open field, rotarod and pole tests), biochemical (lipid peroxidation and nitrite levels), aging-related (telomerase reverse transcriptase (TERT) mRNA expression) and toxicokinetic (MeHg content) parameters in mice. Both the pole and rotarod tests were the most sensitive tests accompanied by increased lipid peroxidation and nitrite levels in brains. MeHg reduced TERT mRNA about 50% demonstrating a strong pro-aging effect. The EO intake, similar to that of human populations, prevented all alterations, without changing the mercury content, but avoiding neurotoxicity and premature aging of the Central Nervous System (CNS). Contrary to the hypothesis found in the literature on the possible chelating properties of Amazonian fruits consumption, the effect of EO would be essentially pharmacodynamics, and possible mechanisms are discussed. Our data already support the regular consumption of EO as an excellent option for exposed Amazonian populations to have additional protection against MeHg intoxication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.