Trees outside forests (TOF) are an underrepresented resource in forest poor nations. As a result of their frequent omission from national forest resource assessments and a lack of readily available very-high-resolution remotely sensed imagery, TOF status and characterization has until now, been unknown. Here, we assess the capacity of openly available 10 m ESA Sentinel constellation satellite imagery for mapping TOF extent at the national level in Bangladesh. In addition, we estimate canopy height for TOF using a TanDEM-X DEM. We map 2,233,578 ha of TOF in Bangladesh with a mean canopy height of 7.3 m. We map 31 and 53% more TOF than existing estimates of TOF and forest, respectively. We find TOF in Bangladesh is nationally fragmented as a consequence of agricultural activity, yet is capable of maintaining connectedness between remaining stands. Now, TOF accounting is feasible at the national scale using readily available datasets, enabling the mainstream inclusion of TOF in national forest resource assessments for other countries.
Cropland expansion is expected to increase across sub-Saharan African (SSA) countries in the next thirty years to meet growing food needs across the continent. These land transformations will have cascading social and ecological impacts that can be monitored using novel Earth observation techniques that produce datasets complementary to national cropland surveys. In this study, we present a flexible Bayesian data synthesis workflow on Google Earth Engine (GEE) that can be used to fuse optical and synthetic aperture radar data and demonstrate its ability to track agricultural change at national scales. We adapted the previously developed Bayesian Updating of Land Cover (Unsupervised) algorithm (BULC-U) by integrating a shapelet and slope thresholding algorithm to identify the locations and dates of cropland expansion and implemented a tiling scheme to allow the processing of large volumes of imagery. We apply this approach to map annual cropland change from 2000 to 2015 for Zambia (750,000 km2), a country that is experiencing rapid growth in agricultural land. We applied our cropland mapping approach to a time series of unsupervised classifications developed from Landsat 5, 7, 8, Sentinel-1, and ALOS PALSAR within 1476 tiles covering Zambia. The annual cropland changes maps reveal active cropland expansion between 2000 to 2015 in Zambia, especially in the Southern, Central, and Eastern provinces. Our accuracy assessment estimates that we have identified 27.5% to 69.6% of the total cropland expansion from 2000 to 2015 in Zambia (commission errors between 6.1% to 37.6%), depending on the slope threshold. Our results demonstrate the usefulness of Bayesian data fusion and shapelet, slope-based thresholding to synthesize optical and synthetic aperture radar for monitoring agricultural changes in situations where training data are scarce. In addition, the annual cropland maps provide one of the first spatially continuous, annually incremented accounts of cropland growth in this region. Our flexible, cloud-based workflow using GEE enables multi-sensor, national-scale agricultural change monitoring at low cost for users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.