Images of Positron Emission Tomography (PET) associated with Computed Tomography (CT) have important diagnostic applications, mainly for oncology. These compound tomographic devices allow the overlapping of functional images obtained from the administration of radiopharmaceuticals and anatomical images generated by X-ray beam attenuation. This work evaluated the impact of reducing the effective dose by reducing the activity injected into the patient using the ICRP 106 biokinetic model. The activity to be injected may vary according to the patient mass and the detector sensitivity. In this work was used the fixed mass of Alderson phantoms, as a standard adult, this mass is 73.5 kg for the male, and 50 kg for the female. Different values of activity to be injected were simulated, from 0.07 mCi to 0.15 mCi per kg, and with 10 mCi fixed, protocol used in some services. Thus, for the acquisition of PET scans, any reduction of the administered activity implies a proportional reduction of the effective dose in patient. The effective dose may vary up to 114% altering the injected activity between 0.07 and 0.15 mCi. The fixed value of 10 mCi is between these variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.