Eurythenes S. I. Smith in Scudder, 1882 are one of the largest scavenging deep-sea amphipods (max. 154 mm) and are found in every ocean across an extensive bathymetric range from the shallow polar waters to hadal depths. Recent systematic studies of the genus have illuminated a cryptic species complex and highlighted the benefits of using a combination of morphological and molecular identification approaches. In this study, we present the ninth species, Eurythenes plasticus sp. nov., which was recovered using baited traps between the depths 6010 and 6949 m in the Mariana Trench (Northwest Pacific Ocean) in 2014. This new Eurythenes species was found to have distinct morphological characteristics and be a well-supported clade based on sequence variation at two mitochondrial regions (16S rDNA and COI). While this species is new to science and lives in the remote hadal zone, it is not exempt from the impacts of anthropogenic pollution. Indeed, one individual was found to have a microplastic fibre, 83.74% similar to polyethylene terephthalate (PET), in its hindgut. As this species has a bathymetric range spanning from abyssal to hadal depths in the Central Pacific Ocean basin, it offers further insights into the biogeography of Eurythenes.
The utilisation of the organic fraction of municipal solid waste as feedstock for bioethanol production could reduce the need for disposal of the ever-increasing amounts of municipal solid waste, especially in developing countries, and fits with the integrated goals of climate change mitigation and transport energy security. Mixed culture fermentation represents a suitable approach to handle the complexity and variability of such waste, avoiding expensive and vulnerable closed-control operational conditions. It is widely accepted that the control of pH in these systems can direct the fermentation process toward a desired fermentation product, however, little empirical evidence has been provided in respect of lignocellulosic waste substrates and different environmental inocula sources. We evaluated ethanol production from the organic fraction of municipal solid waste using five different inocula sources where lignocellulose degradation putatively occurs, namely, compost, woodland soil, rumen, cow faeces and anaerobic granular sludge, when incubated in batch microcosms at either initially neutral or acidic pH and under initially aerobic or anaerobic conditions. Although ethanol was produced by all the inocula tested, their performance was different in response to the imposed experimental conditions. Rumen and anaerobic granular sludge produced significantly the highest ethanol concentrations (∼30 mM) under initially neutral and acidic pH, respectively. A mixed-source community formed by mixing rumen and sludge (R + S) was then tested over a range of initial pH. In contrast to the differences observed for the individual inocula, the maximal ethanol production of the mixed community was not significantly different at initial pH of 5.5 and 7. Consistent with this broader functionality, the microbial community analyses confirmed the R + S community enriched comprised bacterial taxa representative of both original inocula. It was demonstrated that the interaction of initial pH and inocula source dictated ethanologenic activity from the organic fraction of municipal solid waste. Furthermore, the ethanologenic mixed-source community enriched, was comprised of taxa belonging to the two original inocula sources (rumen and sludge) and had a broader functionality. This information is relevant when diverse inocula sources are combined for mix culture fermentation studies as it experimentally demonstrates the benefits of diversity and function assembled from different inocula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.