Adipose tissue equivalents have not been addressed as yet despite the clinical need in congenital deformities, posttraumatic repair, cancer rehabilitation, and other soft tissue defects. Preadipocytes were successfully harvested from rat epididymal fat pads of Sprague-Dawley and Lewis rats and expanded ex vivo. In vitro cultures demonstrated full differentiation of preadipocytes into mature adipocytes with normal lipogenic activity. The onset of differentiation was well-controlled by regulating preadipocyte confluency. Poly(lactic-co-glycolic) acid (PLGA) polymer disks with 90% porosity, 2.5 mm thick, 12 mm diameter, pore size range of 135-633 microm were fabricated and seeded with preadipocytes at 10(5) cells/mL. Disks in vitro demonstrated fully differentiated mature adipocytes within the pores of the disks. Short-term in vivo experiments were conducted by implanting preseeded disks subcutaneously on the flanks of rats for 2 and 5 weeks. Histologic staining of harvested disks with osmium tetroxide (OsO4) revealed the formation of adipose tissue throughout the disks. Fluorescence labeling of preadipocytes confirmed that formed adipose tissue originated from seeded preadipocytes rather than from possible infiltrating perivascular tissue. This study demonstrates the potential of using primary preadipocytes as a cell source in cell-seeded polymer scaffolds for tissue engineering applications.
It was the purpose of this study to evaluate the clinical long-term effects of PLLA degradation in vivo on nerve regeneration in the rat sciatic nerve model. Thirty-one Sprague Dawley rats were utilized. Two groups of animals were selected. The control group of 10 animals received a 12 mm reversed isograft into the right sciatic nerve from 5 donor animals. The experimental group (n = 21) received a 12 mm empty PLLA conduits placed into a 12 mm defect in the right sciatic nerve. The left leg served as an internal control. Walking track analysis was performed monthly through 8 months. At the end of 4 and 8 months, animals in the control isograft and experimental group had the medial and lateral gastrocnemius muscles harvested and weighed for comparison. The midconduit/isograft and the distal nerve in these same animals were harvested and histomorphologically analyzed. Multiple samples were collected and expressed as means +/- standard error. A two-sample t-test and Wilcoxon rank sum test was used to compare the variables. Significance level was set at alpha = 0.05. After Bonferroni correction for multiple testing, a p value of < or = 0.01 was considered statistically significant. Throughout all time periods, the PLLA conduit remained structurally intact and demonstrated tissue incorporation and vascularization. There was no evidence of conduit collapse or breakage with limb ambulation. Moreover, there was no evidence of conduit elongation at 8 months as previously observed with the 75:25 poly(DL-lactic-co-glycolic acid) (PLGA) conduits. The mean absolute value of the sciatic functional index (SFI) demonstrated no group differences from isograft controls measured over the 8 months except at 3 months where the isograft values were higher (p = 0.0379) and at 7 months were the isograft group was significantly lower (p = 0.0115). At 4 and 8 months, the weight of the gastrocnemius muscles of the experimental group was not significantly different from isografts. At 4 months the number of axons/mm2 and nerve fiber density was not significantly different between the isograft control and experimental groups in either the midconduit/isograft or distal nerve. At 8 months the number of axons/mm2 was significantly lower in the isograft compared to the midconduit experimental group (p = 0.006). The number of axons/mm2 in the distal nerve and the nerve fiber density in the midconduit and distal nerve were not significantly different between the two groups. The study confirmed our initial hypothesis that PLLA conduits are a viable scaffold for clinical long-term nerve gap replacement. We are critically aware however that longer evaluation of polymer degradation is warrented. Further studies on these individual nerve components are continuing, with the ultimate goal being the fabrication of a bioactive conduit that meets or exceeds the functional results of isografts.
Fresh frozen sections of mature skeletal muscle fibers from patients with genetically determined "absence" of skeletal muscle phosphorylase (McArdle's disease) have no histochemical phosphorylase activity. That regenerating muscle fibers, in vitro and in vivo, from such patients do have histochemical phosphorylase activity present suggests a loss of enzyme activity with fiber maturity.
Myotonic muscular dystrophy (MyD) is an inherited human disease involving skeletal muscle as well as many other organ systems. We have approached the study of this disorder by growing normal and diseased human muscle in a primary tissue culture system and investigating some of the electrical properties of the resulting myotubes. The most distinctive abnormality noted in MyD myotubes was an increased tendency to fire repetitive action potentials. A decreased action potential afterhyperpolarization amplitude and the presence of depolarizing afterpotentials were also noted, as were a decreased resting membrane potential, decreased action potential amplitude and overshoot, and decreased outward-going rectification. Although the ionic basis of these abnormal properties in vitro is not clearly defined, changes in the slow outward-going potassium current offer the best explanation. Furthermore, MyD cell culture offers a valuable mode for critical analysis of the molecular mechanisms underlying MyD deficits.Myotonic muscular dystrophy (MyD) is an inherited human disease with muscle wasting, weakness, and stiffness as prominent clinical manifestations. Other systems may also be involved, and patients may experience cardiovascular, ophthalmologic, endocrine, and gastrointestinal problems. The primary metabolic defect in MyD is not known.One of the clinical hallmarks of this disorder is myotonia, which is manifested as stiffness and difficulty in relaxing a muscle after voluntary contraction (1). Electromyographically, myotonia is characterized by repetitive bursts of activity, which increase and decrease in frequency (2). Myotonia is seen not only in MyD but also in other syndromes such as human myotonia congenita (3, 4), which resembles myotonia in goats and appears to be related to a decrease in muscle membrane chloride conductance (5, 6). However, a decreased chloride conductance has not been demonstrated in MyD and the cause of myotonia in MyD remains undetermined.Recent studies of erythrocytes (7,8) and muscle (9) from patients with MyD suggest abnormalities in the surface membranes of different tissues. In biopsied MyD muscle fibers, these membrane abnormalities are expressed as a decreased resting membrane potential (4, 10-12) and an increased tendency to fire repetitive action potentials (11). The presence of denervation, degeneration, fat and connective tissue infiltration, and the decreased viability ofbiopsied tissue limit the possible electrophysiological analyses.We
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.