The rep-PCR DNA fingerprint technique, which uses repetitive intergenic DNA sequences, was investigated as a way to differentiate between human and animal sources of fecal pollution. BOX and REP primers were used to generate DNA fingerprints from Escherichia coli strains isolated from human and animal sources (geese, ducks, cows, pigs, chickens, and sheep). Our initial studies revealed that the DNA fingerprints obtained with the BOX primer were more effective for grouping E. coli strains than the DNA fingerprints obtained with REP primers. The BOX primer DNA fingerprints of 154 E. coli isolates were analyzed by using the Jaccard band-matching algorithm. Jackknife analysis of the resulting similarity coefficients revealed that 100% of the chicken and cow isolates and between 78 and 90% of the human, goose, duck, pig, and sheep isolates were assigned to the correct source groups. A dendrogram constructed by using Jaccard similarity coefficients almost completely separated the human isolates from the nonhuman isolates. Multivariate analysis of variance, a form of discriminant analysis, successfully differentiated the isolates and placed them in the appropriate source groups. Taken together, our results indicate that rep-PCR performed with the BOX A1R primer may be a useful and effective tool for rapidly determining sources of fecal pollution.
A horizontal, fluorophore-enhanced, repetitive extragenic palindromic-PCR (rep-PCR) DNA fingerprinting technique (HFERP) was developed and evaluated as a means to differentiate human from animal sources of Escherichia coli. Box A1R primers and PCR were used to generate 2,466 rep-PCR and 1,531 HFERP DNA fingerprints from E. coli strains isolated from fecal material from known human and 12 animal sources: dogs, cats, horses, deer, geese, ducks, chickens, turkeys, cows, pigs, goats, and sheep. HFERP DNA fingerprinting reduced within-gel grouping of DNA fingerprints and improved alignment of DNA fingerprints between gels, relative to that achieved using rep-PCR DNA fingerprinting. Jackknife analysis of the complete rep-PCR DNA fingerprint library, done using Pearson's product-moment correlation coefficient, indicated that animal and human isolates were assigned to the correct source groups with an 82.2% average rate of correct classification. However, when only unique isolates were examined, isolates from a single animal having a unique DNA fingerprint, Jackknife analysis showed that isolates were assigned to the correct source groups with a 60.5% average rate of correct classification. The percentages of correctly classified isolates were about 15 and 17% greater for rep-PCR and HFERP, respectively, when analyses were done using the curve-based Pearson's product-moment correlation coefficient, rather than the band-based Jaccard algorithm. Rarefaction analysis indicated that, despite the relatively large size of the known-source database, genetic diversity in E. coli was very great and is most likely accounting for our inability to correctly classify many environmental E. coli isolates. Our data indicate that removal of duplicate genotypes within DNA fingerprint libraries, increased database size, proper methods of statistical analysis, and correct alignment of band data within and between gels improve the accuracy of microbial source tracking methods.
The ability of a serotype M1 strain of Streptococcus pyogenes to efficiently invade A549 human lung epithelial cells was previously shown to be dependent on bacterial exposure to human or bovine serum proteins or synthetic peptides containing the sequence RGD. In this study, stimulation by invasion agonists was determined to be dependent on expression of the streptococcal cell surface protein, M1. Fetal bovine serum (FBS), fibronectin (Fn), the extracellular matrix protein laminin (Lm), and RGD-containing peptides were tested for their abilities to promote epithelial cell invasion and adherence by isogenic M1+ and M1− strains of S. pyogenes. In the absence of an agonist, invasion and adherence were comparable for the two bacterial strains. FBS, Fn, and Lm stimulated invasion of the M1+ strain as much as 70-fold but failed to significantly affect invasion by the M1−mutant. Adherence of the wild-type strain was stimulated by these same agonists. Epithelial cell adherence by the M1− strain, however, was unaffected by the presence of Fn or Lm. Several RGD-containing peptides were found to promote invasion independently of M1 expression. Binding of 125I-Fn was reduced 88% by the M1− mutation and Fn was found to bind purified M1 protein, suggesting that Fn mediates invasion by direct binding to M1. To determine if host integrins might be involved in internalization of streptococci, several anti-integrin monoclonal antibodies (MAbs) were tested for their abilities to inhibit invasion. Antibody directed against integrin β1 inhibited FBS-, Fn-, and Lm-mediated invasion but did not abrogate RGD-peptide-stimulated invasion. MAb directed against the epithelial cell Fn receptor, integrin α5β1, inhibited Fn and FBS-mediated invasion but did not specifically inhibit Lm-mediated invasion. These results indicate that S. pyogenes has evolved multiple mechanisms for invasion of eukaryotic cells, at least two of which involve interactions between M1 protein, host integrins, and integrin ligands.
CD4 T cells are important for development of long-term immunity to bacterial infections. Here we describe construction of a group A streptococcus (GAS) strain that expresses the model ovalbumin epitope (OVA) on its surface, and the use of this strain in adoptive transfer experiments to study CD4 T cell response to bacterial infection in nasal-associated lymphoid tissue (NALT), which was previously shown to be a specific target for GAS colonization. The OVA + GAS, but not the wild-type strain was shown to activate CD4 T cells in an antigenspecific manner both in vitro and in vivo. After intranasal infection of mice with this strain, OVA-specific CD4 T cells were first activated in NALT, which is functionally equivalent to human tonsils, rather than in the cervical lymph nodes. During localized infection, OVA + GAS induced rapid and prolonged activation of CD4 T cells at higher magnitudes in the NALT than in draining lymph nodes and spleen, where CD4 T cells underwent little or no activation. In contrast, systemic infection induced significantly higher activation of CD4 T cells in both lymph nodes and spleens, compared to when the infection was localized in NALT. Further investigation of cellular immune responses in NALT during GAS infection using adoptive T cell transfer, combined with the model antigen on the pathogen may ultimately shed light on mechanisms for failure of children to develop protective immune responses following streptococcal tonsillitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.