SUMMARY: The annual cycle of plankton was studied over 14 years from 1984 to 2000 at a coastal station in the Gulf of Naples, with the aim of assessing seasonal patterns and interannual trends. Phytoplankton biomass started increasing over the water column in February-early March, and generally achieved peak values in the upper layers in late spring. Another peak was often recorded in autumn. Diatoms and phytoflagellates dominated for the largest part of the year. Ciliates showed their main peaks in phase with phytoplankton and were mainly represented by small (< 30 µm) naked choreotrichs. Mesozooplankton increased in March-April, reaching maximum concentrations in summer. Copepods were always the most abundant group, followed by cladocerans in summer. At the interannual scale, a high variability and a decreasing trend were recorded over the sampling period for autotrophic biomass. Mesozooplankton biomass showed a less marked interannual variability. From 1995 onwards, phytoplankton populations increased in cell number but decreased in cell size, with intense blooms of small diatoms and undetermined coccoid species frequently observed in recent years. In spite of those interannual variations, the different phases of the annual cycle and the occurrence of several plankton species were remarkably regular.Key words: Mediterranean Sea, phytoplankton, ciliates, mesozooplankton, seasonal cycle, long term series. RESUMEN: PATRONES ESTACIONALES EN LAS COMUNIDADES PLANCTÓNICAS EN UNA SERIE TEMPORAL PLURIANUAL EN UNA LOCALIDAD COSTERA DEL MEDITERRÁNEO (GOLFO DE NÁPOLES): UN INTENTO DE DISCERNIR RECURRENCIAS Y TENDENCIAS.-El ciclo anual del plancton se estudió a lo largo de 14 años, desde 1984 a 2000, en una estación costera del golfo de Nápoles, con el objetivo de discernir pautas estacionales y tendencias interanuales. La biomasa fitoplanctónica empezaba a aumentar en la columna de agua en febrero-primeros de marzo, y generalmente alcanzaba valores máximos en las capas superiores a finales de primavera. Se solía registrar otro máximo en otoño. Las diatomeas y los fitoflagelados dominaron durante la mayor parte del año. Los ciliados presentaron sus máximos principales en fase con el fitoplancton y estuvieron representados principalmente por pequeños (< 30 µm) coreotricos desnudos. El mesozooplancton aumentó en marzo-abril, llegando a concentraciones máximas en verano. Los copépodos fueron siempre el grupo más abundante, seguidos de los cladóceros en verano. A la escala interanual, la biomasa autotrófica registró una elevada variabilidad y una tendencia decreciente a lo largo del período de muestreo. La biomasa del mesozooplancton mostró una variabilidad interanual menos marcada. Desde 1995 en adelante, las poblaciones de fitoplancton aumentaron en número de células, pero el tamaño celular se redujo, y en años recientes se han observado floraciones intensas de diatomeas pequeñas y de especies cocoides no determinadas. A pesar de estas variaciones interanuales, las distintas fases del ciclo anual y la presencia de varias es...
A long-term time series of plankton records collected by the continuous plankton recorder (CPR) Survey in the northeast Atlantic indicates an increased occurrence of Cnidaria since 2002. In the years 2007 and 2008, outbreaks of the warm-temperate scyphomedusa, Pelagia noctiluca, appeared in CPR samples between 45° N to 58° N and 1° W to 26° W. Knowing the biology of this species and its occurrence in the adjacent Mediterranean Sea, we suggest that P. noctiluca may be exploiting recent hydroclimatic changes in the northeast Atlantic to increase its extent and intensity of outbreaks. In pelagic ecosystems, Cnidaria can affect fish recruitment negatively. Since P. noctiluca is a highly venomous species, outbreaks can also be detrimental to aquaculture and make bathing waters unusable, thus having profound ecological and socio-economic consequences.
Chust, G., Castellani, C., Licandro, P., Ibaibarriaga, L., Sagarminaga, Y., and Irigoien, X. 2014. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. – ICES Journal of Marine Science, 71: 241–253. In the last decade, the analysis based on Continuous Plankton Recorder survey in the eastern North Atlantic Ocean detected one of the most striking examples of marine poleward migration related to sea warming. The main objective of this study is to verify the poleward shift of zooplankton species (Calanus finmarchicus, C. glacialis, C. helgolandicus, C. hyperboreus) for which distributional changes have been recorded in the North Atlantic Ocean and to assess how much of this shift was triggered by sea warming, using Generalized Additive Models. To this end, the population gravity centre of observed data was compared with that of a series of simulation experiments: (i) a model using only climate factors (i.e. niche-based model) to simulate species habitat suitability, (ii) a model using only temporal and spatial terms to reconstruct the population distribution, and (iii) a model using both factors combined, using a subset of observations as independent dataset for validation. Our findings show that only C. finmarchicus had a consistent poleward shift, triggered by sea warming, estimated in 8.1 km per decade in the North Atlantic (16.5 per decade for the northeast), which is substantially lower than previous works at the assemblage level and restricted to the Northeast Atlantic. On the contrary, C. helgolandicus is expanding in all directions, although its northern distribution limit in the North Sea has shifted northward. Calanus glacialis and C. hyperboreus, which have the geographic centres of populations mainly in the NW Atlantic, showed a slight southward shift, probably responding to cool water penetrating southward in the Labrador Current. Our approach, supported by high model accuracy, shows its power in detecting species latitudinal shifts and identifying its causes, since the trend of occurrence observed data is influenced by the sampling frequency, which has progressively concentrated to lower latitudes with time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.