The production from collaborative web content has grown in recent years. Thus, exploring the quality of these data repositories has also become relevant. This work proposes to develop a tool called WebFeature. Such system allows one to manage, extract, and share quality related feature sets from text, graph and article review. To accomplish this, diff erent types of metrics were implemented based on structure, style, and readability of the texts. In order to evalu- ate the WebFeature applicability, we presented a scenario with its main functionalities (creation of a feature set, extraction of features from a known dataset, and publishing the feature set). Our demon- stration shows that this framework can be useful for extracting features automatically, supporting quality prediction of collabo- rative contents, analyzing text characterization, and improving research reproducibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.