Seed inoculation with plant growth promoting rhizobacteria (PGPR) is an ideal tool to supply the soil with a high density of beneficial microorganisms. However, maintaining viable microorganisms is a major problem during seed treatment and storage. In this work, an evaluation was made of the effect of bacterial immobilization in nanofibers on the stability (viability and maintenance of beneficial properties) of two potential PGPR, Pantoea agglomerans ISIB55 and Burkholderia caribensis ISIB40. Moreover, the impact of soybean seed coating with nanofiber-immobilized rhizobacteria on bacterial survival during seed storage and on germination and plant growth parameters was determined. Bacterial nanoimmobilization and subsequent seed coating with nanofiber-immobilized rhizobacteria were carried out by electrospinning. The results demonstrate that this technique successfully immobilized P. agglomerans ISIB55 and B. caribensis ISIB40 because it did not affect the viability or beneficial properties of either rhizobacteria. Seed coating with nanofiber-immobilized rhizobacteria improved P. agglomerans ISIB55 and B. caribensis ISIB40 survival on seeds stored for 30 days and contributed to the successful colonization of both bacteria on the plant root. Moreover, seed coating with P. agglomerans ISIB55 increased germination, length and dry weight of the root. Furthermore, seed coating with B. caribensis ISIB40 increased leaf number and dry weight of the shoot. Therefore, the technique applied in the present work to coat seeds with nanofiber-immobilized PGPR could be considered a promising eco-friendly approach to improve soybean production using a microbial inoculant.
Maternal GBS colonization is one of the most important risk factors for developing disease in newborns. Lactobacillus reuteri CRL1324 could be considered as a new biological agent to reduce infections caused by this micro-organism.
Background: Lactobacillus spp. dominating the vaginal microbiota of healthy women contribute to the prevention of urogenital and sexually transmitted infections. Their protective role in the vagina can be mediated by Lactobacillus cells themselves, metabolites or bacterial components, able to interfere with pathogen adhesion and infectivity. Vulvovaginal candidiasis (VVC) is a common genital infection, caused by the overgrowth of opportunistic Candida spp. including C. albicans, C. glabrata, C. krusei and C. tropicalis. Azole antifungal drugs are not always efficient in resolving VVC and preventing recurrent infections, thus alternative anti-Candida agents based on vaginal probiotics have gained more importance. The present work aims to chemically characterize the biosurfactant (BS) isolated from a vaginal Lactobacillus crispatus strain, L. crispatus BC1, and to investigate its safety and antiadhesive/antimicrobial activity against Candida spp., employing in vitro and in vivo assays. Results: BS isolated from vaginal L. crispatus BC1 was characterised as non-homogeneous lipopeptide molecules with a critical micellar concentration value of 2 mg/mL, and good emulsification and mucoadhesive properties. At 1.25 mg/mL, the BS was not cytotoxic and reduced Candida strains' ability to adhere to human cervical epithelial cells, mainly by exclusion mechanism. Moreover, intravaginal (i.va.) inoculation of BS in a murine experimental model was safe and did not perturb vaginal cytology, histology and cultivable vaginal microbiota. In the case of i.va. challenge of mice with C. albicans, BS was able to reduce leukocyte influx. Conclusions: These results indicate that BS from vaginal L. crispatus BC1 is able to interfere with Candida adhesion in vitro and in vivo, and suggest its potential as a preventive agent to reduce mucosal damage occasioned by Candida during VVC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.