With 6.93M confirmed cases of COVID-19 worldwide, making individuals aware of their sanitary health and ongoing pandemic remains the only way to prevent the spread of this virus. Wearing masks is an important step in this prevention. Hence, there is a need for monitoring if people are wearing masks or not. Closed circuit television (CCTV) cameras endowed with computer vision function by embedded systems, have become popular in a wide range of applications, and can be used in this case for real time monitoring of people wearing masks or not. In this paper, we propose to model this task of monitoring as a special case of object detection. However, real-time scene parsing through object detection running on edge devices is very challenging, due to limited memory and computing power of embedded devices. To deal with these challenges, we used a few popular object detection algorithms such as YOLOv3, YOLOv3Tiny, SSD and Faster R-CNN and evaluated them on Moxa3K benchmark dataset. The results obtained from these evaluations help us to determine methods that are more efficient, faster, and thus are more suitable for real-time object detection specialized for this task.
The potentiality of nano‐enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese‐based biocompatible nanoscale material (C‐Mn3O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C‐Mn3O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non‐toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.