A field study was conducted in Pre-Kharif season 2007 on paddy to determine the persistence of thiamethoxam (12.6%) and lambda cyhalothrin (9.4%) [in a 'Readymix' formulation Alika 247 ZC], following the application of 33 g. a.i. ha⁻¹ (T₁) and 66 g. a.i. ha⁻¹ (T₂). Spraying of insecticide was done during milking stage of the crop (63 days after transplantation). Thiamethoxam and lambda cyhalothrin residues were estimated by HPLC and GLC respectively. The half-life values were 5.2-5.8 and 4.8 days for thiamethoxam and lambda cyhalothrin respectively. No residue was detected in the harvested paddy, straw, grain, and soil samples.
A field experiment was conducted over two seasons to evaluate the dissipation kinetics and assess the risks of chlorfenapyr in tomato and cabbage following foliar application of chlorfenapyr 10% SC at 100 and 200 g a.i. ha. Samples of tomato, cabbage, and soil were analyzed and quantified by gas chromatography-electron capture detector (GC-ECD). The limit of detection (LOD) and limit of quantification (LOQ) of chlorfenapyr were found to be 0.01 and 0.03 mg kg, respectively, in tomato, cabbage, and soil. The dissipation of chlorfenapyr followed first-order kinetics. The compound showed less persistence in both the vegetables and soil as the calculated half-life values of chlorfenapyr ranged between 4.54 and 7.74 days considering two different doses and seasons. The residue was below detection limit in all the untreated plant and soil samples. The pre-harvest interval (PHI) of chlorfenapyr in both the vegetables was determined to be 9-14 days regardless of dose or season. The theoretical maximum residue contribution (TMRC) of chlorfenapyr was calculated for tomato and cabbage and was found to be lower than the maximum permissible intake (MPI) of the compound. Therefore, the application of chlorfenapyr at the recommended dose in tomato and cabbage for crop protection seems to be safe from both environmental contamination and consumer safety standpoints.
A field experiment was conducted to determine the persistence of metamifop in transplanted rice crop for two seasons. Metamifop 10% EC was applied at two doses: 100 g a.i. ha and 200 g a.i. ha at 2-3 leaf stage of Echinochloa crusgalli. The residues of metamifop along with its major metabolite, N-(2-fluorophenyl)-2-hydroxy-N-methylpropionamide (HFMPA), were estimated in rice plant, field water and soil using Liquid Chromatography Mass Spectrometry. Limit of detection and limit of quantification of the method for both the compounds were set at 0.003 μg g and 0.010 μg g respectively. Metamifop showed less persistence in field water and rice plant as compared to soil samples. Presence of HFMPA was recorded in rice plant and soil. Both the compounds were found below level of quantification in harvest samples of straw, grains, husk and soil. A safe waiting period of 52 d was suggested for harvesting of rice when metamifop was applied at 100 g a.i. ha (recommended dose).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.