RING (Really Interesting New Gene) domains in ubiquitin RING E3 ligases exclusively engage ubiquitin (Ub)-loaded E2s to facilitate ubiquitination of their substrates. Despite such specificity, all RINGs characterized till date bind unloaded E2s with dissociation constants (Kds) in the micromolar to the sub-millimolar range. Here, we show that the RING domain of E3 ligase ZNRF1, an essential E3 ligase implicated in diverse cellular pathways, binds Ube2N with a Kd of ∼50 nM. This high-affinity interaction is exclusive for Ube2N as ZNRF1 interacts with Ube2D2 with a Kd of ∼1 µM, alike few other E3s. The crystal structure of ZNRF1 C-terminal domain in complex with Ube2N coupled with mutational analyses reveals the molecular basis of this unusual affinity. We further demonstrate that the ubiquitination efficiency of ZNRF1 : E2 pairs correlates with their affinity. Intriguingly, as a consequence of its high E2 affinity, an excess of ZNRF1 inhibits Ube2N-mediated ubiquitination at concentrations ≥500 nM instead of showing enhanced ubiquitination. This suggests a novel mode of activity regulation of E3 ligases and emphasizes the importance of E3-E2 balance for the optimum activity. Based on our results, we propose that overexpression-based functional analyses on E3 ligases such as ZNRF1 must be approached with caution as enhanced cellular levels might result in aberrant modification activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.