Alzheimer’s disease is an incurable neurodegenerative disease primarily affecting the elderly population. Efficient automated techniques are needed for early diagnosis of Alzheimer’s. Many novel approaches are proposed by researchers for classification of Alzheimer’s disease. However, to develop more efficient learning techniques, better understanding of the work done on Alzheimer’s is needed. Here, we provide a review on 165 papers from 2005 to 2019, using various feature extraction and machine learning techniques. The machine learning techniques are surveyed under three main categories: support vector machine (SVM), artificial neural network (ANN), and deep learning (DL) and ensemble methods. We present a detailed review on these three approaches for Alzheimer’s with possible future directions.
Neuroimaging-driven brain age estimation has introduced a robust (reliable and heritable) biomarker for detecting and monitoring neurodegenerative diseases. Here, we computed and compared brain age in Alzheimer's disease (AD) and Parkinson's disease (PD) patients using an advanced machine learning procedure involving T1-weighted MRI scans and gray matter (GM) and white matter (WM) models. Brain age estimation frameworks were built using 839 healthy individuals and then the brain estimated age difference (Br ain-EAD: chronological age subtracted from brain estimated age) was assessed in a large sample of PD patients (n = 160) and AD patients (n = 129), respectively. The mean Brain-EADs for GM were +9.29 ± 6.43 years for AD patients versus +1.50 ± 6.03 years for PD patients. For WM, the mean Brain-EADs were +8.85 ± 6.62 years for AD patients versus +2.47 ± 5.85 years for PD patients. In addition, PD patients showed a significantly higher WM Brain-EAD than GM Brain-EAD. In a direct comparison between PD and AD patients, we observed significantly higher Brain-EAD values in AD patients for both GM and WM. A comparison of the Brain-EAD between PD and AD patients revealed that AD patients may have a significantly "older-appearing" brain than PD patients.
This work is directed toward the development of a computer-aided diagnosis (CAD) system to detect abnormalities or suspicious areas in digital mammograms and classify them as malignant or nonmalignant. Original mammogram is preprocessed to separate the breast region from its background. To work on the suspicious area of the breast, region of interest (ROI) patches of a fixed size of 128 × 128 are extracted from the original large-sized digital mammograms. For training, patches are extracted manually from a preprocessed mammogram. For testing, patches are extracted from a highly dense area identified by clustering technique. For all extracted patches corresponding to a mammogram, Zernike moments of different orders are computed and stored as a feature vector. A support vector machine (SVM) is used to classify extracted ROI patches. The experimental study shows that the use of Zernike moments with order 20 and SVM classifier gives better results among other studies. The proposed system is tested on Image Retrieval In Medical Application (IRMA) reference dataset and Digital Database for Screening Mammography (DDSM) mammogram database. On IRMA reference dataset, it attains 99 % sensitivity and 99 % specificity, and on DDSM mammogram database, it obtained 97 % sensitivity and 96 % specificity. To verify the applicability of Zernike moments as a fitting texture descriptor, the performance of the proposed CAD system is compared with the S. Sharma · P. Khanna ( ) Pandit Dwarka Prasad Mishra Indian Institute of Information Technology, Design and Manufacturing Jabalpur, Dumna Airport Road, P.O.: Khamaria, Jabalpur, Madhya Pradesh 482 005, India e-mail: pkhanna@iiitdmj.ac.in S. Sharma e-mail: shubhi.sharma@iiitdmj.ac.in other well-known texture descriptors namely gray-level cooccurrence matrix (GLCM) and discrete cosine transform (DCT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.