An empirical force field for carbon based upon the Murrell-Mottram potential is developed for the calculation of the vibrational frequencies of carbon nanomaterials. The potential is reparameterised using data from density functional theory calculations through a Monte-Carlo hessian-matching approach, and when used in conjunction with the empirical bond polarisability model provides an accurate description of the non-resonant Raman spectroscopy of carbon nanotubes and graphene. With the availability of analytical first and second derivatives, the computational cost of evaluating harmonic vibrational frequencies is a fraction of the cost of corresponding quantum chemical calculations, and makes the accurate atomistic vibrational analysis of systems with thousands of atoms possible. Subsequently, the non-resonant Raman spectroscopy of carbon nanotubes and graphene, including the role of defects and carbon nanotube junctions is explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.