The inter relationships between the two progenitors is interesting as both wild relatives are known to be the great untapped gene reservoirs. The debate continues on granting a separate species status to Oryza nivara. The present study was conducted on populations of Oryza rufipogon and Oryza nivara from Eastern India employing morphological and molecular characteristics. The cluster analysis of the data on morphological traits could clearly classify the two wild forms into two separate discrete groups without any overlaps i.e. lack of intermediate forms, suggesting the non-sympatric existence of the wild forms. Amplification of hyper variable regions of the genome could reveal 144 alleles suggesting high genetic diversity values (average He = 0.566). Moreover, with 42.37% of uncommon alleles between the two wild relatives, the molecular variance analysis (AMOVA) could detect only 21% of total variation (p < 0.001) among them and rest 59% was within them. The population structure analysis clearly classified these two wild populations into two distinct sub-populations (K = 2) without any overlaps i.e. lack of intermediate forms, suggesting the non-sympatric existence of the wild forms. Clear differentiation into two distinct groups indicates that O. rufipogon and O. nivara could be treated as two different species.
BackgroundSpeciality rice, in general, and aromatic rice in particular, possess enormous market potential for enhancing farm profits. However, systematic characterization of the diversity present in this natural wealth is a major pre requisite for using it in the breeding programs. This study reports qualitative phenotypic trait based characterization of 126 short grain aromatic rice genotypes, collected from different areas of the state of Odisha, India.ResultsOut of the 24 descriptors employed, highest variability (8 different types) was observed for lemma-palea colour with a genetic diversity index (He) of 0.696. The principal component analysis reveals that the tip colour of lemma, colour of awn and colour of stigma, cumulatively explain 74 % of the total variation. The Population STRUCTURE analysis classified the population into two subpopulations which were subdivided further into four distinct groups. The western and southern districts of Odisha are endowed with maximum diversity in comparison to eastern and northern districts and at district level comparisons, Koraput and Puri districts are rich with a genetic diversity values of 0.324 and 0.303 respectively. With this set of morphological qualitative traits, based on ‘phenoprinting’, a newly proposed bar coding system, unique fingerprints of each genotype can be effectively generated that can help in easy identification of these genotypes.ConclusionThough aromatic rices represent a tiny fraction of the total rice germplasm, a small collection of 126 land races did exhibit rich diversity for all the qualitative traits. For lemma-palea colour, eight different types were detected while for tip colour of lemma, six different types were recorded, suggesting the presence of rich variability in short grain aromatic rices that are conserved in this region. The proposed ‘phenoprinting’ can be an effective descriptor with the unique finger prints generated for each genotype and coupled with molecular (DNA) finger printing, we can discriminate and identify each and every aromatic short grain rice genotype. The proposed system not only help in conservation but also can confer IPR protection to these specialty rices.Electronic supplementary materialThe online version of this article (doi:10.1186/s12898-016-0086-8) contains supplementary material, which is available to authorized users.
A large number of short grain aromatic rice suited to the agro-climatic conditions and local preferences are grown in niche areas of different parts of India and their diversity is evolved over centuries as a result of selection by traditional farmers. Systematic characterization of these specialty rices has not been attempted. An effort was made to characterize 126 aromatic short grain rice landraces, collected from 19 different districts in the State of Odisha, from eastern India. High level of variation for grain quality and agronomic traits among these aromatic rices was observed and genotypes having desirable phenotypic traits like erect flag leaf, thick culm, compact and dense panicles, short plant stature, early duration, superior yield and grain quality traits were identified. A total of 24 SSR markers corresponding to the hyper variable regions of rice chromosomes were used to understand the genetic diversity and to establish the genetic relationship among the aromatic short grain rice landraces at nuclear genome level. SSR analysis of 126 genotypes from Odisha and 10 genotypes from other states revealed 110 alleles with an average of 4.583 and the Nei’s genetic diversity value (He) was in the range of 0.034–0.880 revealing two sub-populations SP 1 (membership percentage-27.1%) and SP 2 (72.9%). At the organelle genomic level for the C/A repeats in PS1D sequence of chloroplasts, eight different plastid sub types and 33 haplotypes were detected. The japonica (Nipponbare) subtype (6C7A) was detected in 100 genotypes followed by O. rufipogon (KF428978) subtype (6C6A) in 13 genotypes while indica (93–11) sub type (8C8A) was seen in 14 genotypes. The tree constructed based on haplotypes suggests that short grain aromatic landraces might have independent origin of these plastid subtypes. Notably a wide range of diversity was observed among these landraces cultivated in different parts confined to the State of Odisha.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.