This review is based on latest application of nanoparticles in hydraulic fracturing, and their feasibility as compared to other conventional methods. Focusing on technical, economic, mechanisms and direction of future research. Current status and advancement give a promising future application by using unique properties of nanomaterials such as small sizes, stability, magnetic properties and surface area which are yet to be exploited to full potential. Nano materials can be inculcated in drilling in all forms. From acting as additives in drilling mud there by enhancing density, gel breaking strength, viscosity, acting as a proppant, cross linking agent etc. There are certain problems which are difficult to overcome using macro and micro type additives due to limitations in physical, chemical and environmental characteristics. Hence, the scientists are looking for such smart fluids which can overcome these limitations. Compared to their parent materials, nanoparticles can be modified physically, chemically, electrically, thermally, thermodynamic properties and interaction potential of nanomaterial. However more investment, work and pilot projects are required to understand properties of nanomaterials at reservoir temperature and pressure. Nanomaterials such as aluminium oxide, zinc oxide, copper oxide, silicon dioxide, low cost carbon nanotubes, fly ash nanoparticles in unconventional reservoirs need to be further researched. Moreover, focus should be put on economic analysis, performance at reservoir conditions, cross linking and agglomeration properties, wettability alterations, interfacial tensions properties. The enhanced hydrocarbon recovery from unconventional reservoirs through wettability alterations and interfacial tension decrement by nanomaterials and combined use of fracturing fluid system comprising of VES, foams, proppants gives a promising future application.
The development of shale plays requires accurate forecasting of production rates and expected ultimate recoveries, which is challenging due to the complexities associated with production from hydraulically fractured horizontal wells in unconventional reservoirs. Traditional empirical models like Arps decline are inadequate in capturing these complexities, and long-term forecasting is hindered by the challenges posed by 3 phase flow. In response, a new physics-augmented, data-driven forecasting method has been proposed that efficiently captures these complexities. The proposed PI-based forecasting (PIBF) method combines data-driven techniques with the physics of propagation of dynamic drainage volume under transient flow conditions observed by unconventional wells for a prolonged period. The model requires only routinely measured inputs such as production rates and wellhead pressure, and efficiently captures the trend shift in gas-to-oil ratio caused by free gas liberation in the near-wellbore region. By using material balance and productivity index models, the proposed approach can forecast well performance and handle changing operational conditions during the well's lifecycle. Compared to existing empirical or analytical methods like Arps decline and RTA, the proposed method yields more accurate forecasting results, while still using easily available inputs. Empirical methods like Arps decline have low input requirements but lack physical insights, leading to inaccuracies and inability to handle changing operational conditions. Pure physics-based methods like RTA and reservoir simulation require more input properties that are often difficult to obtain, resulting in a low range of applicability. Overall, the proposed method offers a promising alternative to existing methods, effectively combining data-driven techniques with physics-based insights to accurately forecast well performance and handle changing operational conditions in unconventional reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.