Fossil fuel resources are decreasing daily while biodiesel fuels are attracting increasing attention worldwide as blending components or direct replacements for diesel fuel in vehicle engines. In this experiment the seed oils of 30 Neem (Azadirachta indica. A. juss) biotypes were screened and evaluated for their physio-chemical parameters for oil content, biodiesel yield, density, viscosity, iodine value , free fatty acid and saponification value. Hence the neem seed oil tested in this current study could be the potential sources of raw material for biodiesel production.
Pigeonpea (Cajanus cajan (L) Millsp.) is an important food legume crop of rain fed agriculture in the arid and semiarid tropics of the world. It has deep and extensive root system which serves a number of important physiological and metabolic functions in plant development and growth. In order to identify genes associated with pigeonpea root, ESTs were generated from the root tissues of pigeonpea (GRG-295 genotype) by normalized cDNA library. A total of 105 high quality ESTs were generated by sequencing of 250 random clones which resulted in 72 unigenes comprising 25 contigs and 47 singlets. The ESTs were assigned to 9 functional categories on the basis of their putative function. In order to validate the possible expression of transcripts, four genes, namely, S-adenosylmethionine synthetase, phosphoglycerate kinase, serine carboxypeptidase, and methionine aminopeptidase, were further analyzed by reverse transcriptase PCR. The possible role of the identified transcripts and their functions associated with root will also be a valuable resource for the functional genomics study in legume crop.
Biodiesel is becoming prominent among the alternatives to conventional petro-diesel due to economic, environmental and social factors. The quality of biodiesel is influenced by the nature of feedstock and the production processes employed. High amounts of free fatty acids (FFA) in the feedstock are known to be detrimental to the quality of biodiesel. In addition, oils with compounds containing hydroxyl groups possess high viscosity due to hydrogen bonding. American Standards and Testing Materials, (ASTM D 6751) recommends FFA content of not more than 0.5% in biodiesel and a viscosity of less than 6 mm 2 /s. In this experiment the seed oils of 30 Neem (Azadirachta indica. A. juss) biotypes were screened and evaluated for their physico-chemical parameters for their potential in biodiesel. The properties of Neem biodiesel were compared with Bureau of Indian Standards (BIS) and the fuel properties of diesel. Results showed that high amounts of FFA in oils produced low quality biodiesel while neutralized oils with low amounts of FFA produced high quality biodiesel. The quality of biodiesel from jatropha and castor oils was improved greatly by neutralising the crude oils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.