The enzyme α-galactosidase (α-D-galactoside galactohydrolase; EC 3.2.1.22) catalyzes the hydrolysis of α-1,6-linked galactose residues in oligosaccharides and polymeric galactomannan. The α-galactosidases are of particular interest in view of their many potential biotechnological and medical applications. These enzymes have found wide use in various industries such as food and feed, sugar and paper and pulp for the removal of raffinose and stachyose. They are also important medically for blood group conversion and in the treatment of Fabry disease. Most of the research on α-galactosidases has focused on their isolation from various microbial sources. In the last decade, cloning of novel α-galactosidase genes and their heterologous expression has gained momentum. The present review focuses on the production of α-galactosidases from bacteria, fungi and yeast, and discusses their properties. Recent progress on cloning and heterologous expression in various hosts is summarized with special emphasis on their application in various fields.
An endo-1,4-β-mannanase gene (RmMan5A) was cloned from the thermophilic fungus Rhizomucor miehei for the first time and expressed in Escherichia coli . The gene had an open reading frame of 1330 bp encoding 378 amino acids and contained four introns. It displayed the highest amino acid sequence identity (42%) with the endo-1,4-β-mannanases from glycoside hydrolase family 5. The purified enzyme was a monomer of 43 kDa. RmMan5A displayed maximum activity at 55 °C and an optimal pH of 7.0. It was thermostable up to 55 °C and alkali-tolerant, displaying excellent stability over a broad pH range of 4.0-10.0, when incubated for 30 min without substrate. The enzyme displayed the highest specificity for locust bean gum (K(m) = 3.78 mg mL⁻¹), followed by guar gum (K(m) = 7.75 mg mL⁻¹) and konjac powder (K(m) = 22.7 mg mL⁻¹). RmMan5A hydrolyzed locust bean gum and konjac powder yielding mannobiose, mannotriose, and a mixture of various mannose-linked oligosaccharides. It was confirmed to be a true endo-acting β-1,4-mannanase, which showed requirement of four mannose residues for hydrolysis, and was also capable of catalyzing transglycosylation reactions. These properties make RmMan5A highly useful in the food/feed, paper and pulp, and detergent industries.
In this study, a novel beta-1,3-1,4-glucanase gene (designated as PtLic16A) from Paecilomyces thermophila was cloned and sequenced. PtLic16A has an open reading frame of 945 bp, encoding 314 amino acids. The deduced amino acid sequence shares the highest identity (61%) with the putative endo-1,3(4)-beta-glucanase from Neosartorya fischeri NRRL 181. PtLic16A was cloned into a vector pPIC9K and was expressed successfully in Pichia pastoris as active extracellular beta-1,3-1,4-glucanase. The recombinant beta-1,3-1,4-glucanase (PtLic16A) was secreted predominantly into the medium which comprised up to 85% of the total extracellular proteins and reached a protein concentration of 9.1 g l(-1) with an activity of 55,300 U ml(-1) in 5-l fermentor culture. The enzyme was then purified using two steps, ion exchange chromatography, and gel filtration chromatography. The purified enzyme had a molecular mass of 38.5 kDa on SDS-PAGE. It was optimally active at pH 7.0 and a temperature of 70 degrees C. Furthermore, the enzyme exhibited strict specificity for beta-1,3-1,4-D: -glucans. This is the first report on the cloning and expression of a beta-1,3-1,4-glucanase gene from Paecilomyces sp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.