COVID-19 is a new disease, caused by the novel coronavirus SARS-CoV-2, that was firstly delineated in humans in 2019.Coronaviruses cause a range of illness in patients varying from common cold to advanced respiratory syndromes such as Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory Syndrome (MERS-CoV). The SARS-CoV-2 outbreak has resulted in a global pandemic, and its transmission is increasing at a rapid rate. Diagnostic testing and approaches provide a valuable tool for doctors and support them with the screening process. Automatic COVID-19 identification in chest X-ray images can be useful to test for COVID-19 infection at a good speed. Therefore, in this paper, a framework is designed by using Convolutional Neural Networks (CNN) to diagnose COVID-19 patients using chest X-ray images. A pretrained GoogLeNet is utilized for implementing the transfer learning (i.e., by replacing some sets of final network CNN layers). 20-fold cross-validation is considered to overcome the overfitting quandary. Finally, the multiobjective genetic algorithm is considered to tune the hyperparameters of the proposed COVID-19 identification in chest X-ray images. Extensive experiments show that the proposed COVID-19 identification model obtains remarkably better results and may be utilized for real-time testing of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.