This study illustrates the validation of Aeolus Horizontal Line-Of-Sight (HLOS) winds, both Rayleigh-clear and Mie-cloudy, using in situ satellite wind (Atmospheric Motion Vectors, AMVs) observations, and NWP equivalents for three months, June-August 2020, covering the Indian summer monsoon season. Estimated errors in the Mie-cloudy (Rayleigh-clear) winds are clustered around 0.5-4 m⋅s −1 (3-8 m⋅s −1 ), and the differences between Aeolus Mie-cloudy (Rayleigh-clear) and sonde winds are within ±5 m⋅s −1 (± 8 m⋅s −1 ), but the systematic error is close to zero over the Northern Hemisphere where there are more sonde reports. Validation shows the quality of Mie-cloudy winds is better than Rayleigh-clear winds. Though the comparison against the observations like sonde (radiosonde and pilot balloons together) and aircraft indicate the quality of the Aeolus winds, their sparse spatial and temporal coverage limits the validation. Validation of Aeolus winds against AMVs provides similar results but with a better and nearly complete picture of the quality and quantity, with more information over the data-sparse and remote regions. Statistical scores suggest the characteristics of the Aeolus winds at different vertical levels and geographical regions remain the same irrespective of the validation reference datasets. The Indian summer monsoon features like Low-Level Jet (LLJ) and Tropical Easterly Jet (TEJ) are well represented in the Aeolus winds. This study also investigated the impact of the Aeolus HLOS winds over the Indian region through the collocated radiosonde and ALADIN wind profile assimilation experiments. Observing System Experiments (OSEs) suggest assimilation of Aeolus winds produced marginal improvement in the simulation of north Indian Ocean cyclones.
Sea surface winds from the Oceansat-2 scatterometer (OSCAT) are important inputs to Numerical Weather Prediction (NWP) models. The Indian Space Research Organization (ISRO) recently updated the OSCAT retrieval algorithm in order to generate better products. An attempt has been made in this study to evaluate the updated OSCAT winds using buoy observations and the 6-hour short-term forecasts from the T574L64 model from the National Centre for Medium Range Weather Forecasting (NCMRWF) during the 2011 monsoon. The results of the OSCAT evaluation are also compared with those from the Advanced Scatterometer (ASCAT) onboard the Meteorological Operational Satellite-A (MetOp-A) which were evaluated in the same way. The root mean square differences (RMSDs) for wind speed and direction, are within 2 m s −1 and 20°for both scatterometers. The RMSDs for OSCAT are slightly higher than those for ASCAT, and this difference may be attributed in part to the difference in frequency and resolution of the scatterometer payloads. The bias and standard deviation for ASCAT winds are also lower than those for OSCAT winds with respect to the model short-range forecast, and this can be attributed to the regular assimilation of ASCAT winds in the model. RÉSUMÉ [Traduit par la rédaction] Les vents à la surface de la mer fournis par le diffusiomètre Oceansat-2 (OSCAT) sont des données d'entrée importantes dans les modèles de prévision numérique du temps. L'Indian Space Research Organization (ISRO) a récemment mis à jour l'algorithme d'extraction de l'OSCAT dans le but d'obtenir de meilleurs produits. Nous avons essayé dans cette étude d'évaluer les vents fournis par le nouvel algorithme de l'OSCAT en nous servant des observations par bouées et des prévisions à court terme de 6 heures du modèle T574L64 du National Centre for Medium Range Weather Forecasting (NCMRWF) durant la mousson de 2011. Nous comparons aussi les résultats de l'évaluation des vents OSCAT avec les vents fournis par le diffusiomètre de pointe (ASCAT) du Satellite météorologique opérationnel A (MetOp-A) qui ont été évalués de la même façon. Les écarts-types pour la vitesse et la direction du vent sont en deçà de 2 m s −1 et 20°pour les deux diffusiomètres. Les écarts-types pour l'OSCAT sont légèrement plus grands que pour l'ASCAT et cette différence peut en partie s'expliquer par la différence dans la fréquence et la résolution des charges utiles en diffusiomètre. Le biais et l'écart-type des vents ASCAT sont aussi plus faibles que ceux des vents OSCAT calculés par rapport à la prévision à court terme du modèle et cette différence peut être attribuable à l'assimilation régulière des vents ASCAT dans le modèle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.