In computer experiments, a mathematical model implemented on a computer is used to represent complex physical phenomena. These models, known as computer simulators, enable experimental study of a virtual representation of the complex phenomena. Simulators can be thought of as complex functions that take many inputs and provide an output. Often these simulators are themselves expensive to compute, and may be approximated by "surrogate models" such as statistical regression models. In this paper we consider a new kind of surrogate model, a Bayesian ensemble of trees (Chipman et al. 2010), with the specific goal of learning enough about the simulator that a particular feature of the simulator can be estimated. We focus on identifying the simulator's global minimum. Utilizing the Bayesian version of the Expected Improvement criterion (Jones et al. 1998), we show that this ensemble is particularly effective when the simulator is ill-behaved, exhibiting nonstationarity or abrupt changes in the response.A number of illustrations of the approach are given, including a tidal power application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.