The application of surfactant flooding for enhanced oil recovery (EOR) promotes hydrocarbon recovery through reduction of oil–water interfacial tension and alteration of oil-wet rock wettability into the water-wet state. Unfortunately, surfactant depletion in porous media, due to surfactant molecule adsorption and retention, adversely affects oil recovery, thus increasing the cost of the surfactant flooding process. Chemical-based materials are normally used as inhibitors or sacrificial agents to minimize surfactant adsorption, but they are quite expensive and not environmentally friendly. Plant-based materials (henna extracts) are far more sustainable because they are obtained from natural sources. However, there is limited research on the application of henna extracts as inhibitors to reduce dynamic adsorption of the surfactant in porous media and improve oil recovery from such media. Thus, henna extracts were introduced as an eco-friendly and low-cost sacrificial agent for minimizing the static and dynamic adsorption of sodium dodecyl sulfate (SDS) onto quartz sand in this study. Results showed that the extent of surfactant adsorption was inversely proportional to the henna extract concentration, and the adsorption of the henna extract onto the quartz surface was a multilayer adsorption that followed the Freundlich isotherm model. Precisely, the henna extract adsorption on quartz sand is in the range of 3.12–4.48 mg/g (for static adsorption) and 5.49–6.73 mg/g (for dynamic adsorption), whereas the SDS adsorption on quartz sand was obtained as 2.11 and 4.79 mg/g at static and dynamic conditions, respectively. In the presence of 8000 mg/L henna extract, SDS static and dynamic adsorption was significantly reduced by 64 and 82%, respectively. At the same conditions, the residual oil recovery increased by 9.2% over normal surfactant flooding. The study suggests that the use of henna extracts as a sacrificial agent during SDS flooding could result in the reduction of static and dynamic adsorption of surfactant molecules on quartz sand, thus promoting hydrocarbon recovery from sandstone formations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.