Large doses of recombinant growth factors formulated in solution form directly injected into the body is usual clinical practice in treating second-degree scald injuries, with promising results, but this approach creates side effects; furthermore, it may not allow appropriate levels of the factor to be sensed by the target injured tissue/organ in the specific time frame, owing to complications arising from regeneration. In this research, two delivery methods (infusion pumping and local topical application) were applied to deliver recombinant human erythropoietin (rHuEPO) for skin regeneration. First, rHuEPO was given in deep second-degree scald injury sites in mice by infusion pump. Vascularization was remarkably higher in the rHuEPO pumping group than in controls. Second, local topical application of rHuEPO gel was given in deep second-degree scald injury sites in rats. Histological analysis showed that epithelialization rate was significantly higher in the rHuEPO gel-treated group than in controls. Immunohistochemical studies showed that the rHuEPO gel-treated group showed remarkably higher expression of skin regeneration makers than the control group. An accurate method for visualization and quantification of blood vessel networks in target areas has still not been developed up to this point, because of technical difficulties in detecting such thin blood vessels. A method which utilizes a series of steps to enhance the image, removes noise from image background, and tracks the vessels edges for vessel segmentation and quantification has been used in this study. Using image analysis methods, we were able to detect the microvascular networks of newly formed blood vessels (less than 500 μm thickness), which participate in the healing process, providing not only nutrition and oxygen to grow tissues but also necessary growth factors to grow tissue cells for complete skin regeneration. The rHuEPO-treated group showed higher expression of stem cell markers (CD 31, CD 90, CD 71, and nestin), which actively contribute to in-wound-healing processes for new hair follicle generation as well as skin regeneration. Collectively, both rHuEPO group pumping into the systemic circulation system, and injection into the local injury area, prompted mice and rats to form new blood vessel networks in scald injury sites, which significantly participate in the scald healing process. These results may lead to the development of novel treatments for scald wounds.
Tuberculosis (TB) is one of the deadly diseases in the present era caused by Mycobacterium tuberculosis. Principally, this bacterium attacks the lungs, however, MTB Has been observed affecting any part of the human body including the kidney, spine, and brain. Drug-resistant progression and other associated properties of MTB become a major hurdle in drug discovery to fight against tuberculosis. Moreover, some of the challenging situations such as the low range of chemical agents, the time-consuming process of drug development, the shortage of predictive animal models, and inadequate information of the physicochemical evidence required for effective bacterial penetration, are additional hindrances for the pharmaceutical scientist. In the current chapter, we focus on challenges encountered during drug discovery and need to be overcome as M. tuberculosis has a substantial barrier in its lipid-containing cell wall to inhibit the influx of drugs which is the initial requirement of the drug to show its therapeutic effect. There is also an immediate need for efficient vaccine development which may show its effect on adolescents and adults along with infants. Investigation on key bacterial targets has been troublesome, in light of the vulnerability around the microenvironments found in vivo and subsequently, the importance of exceptional metabolic pathways. The manuscript is prepared after the extensive literature survey to explore the vigorous approaches in novel drug designing and in proposing potent drug targets. The re-engineering and repositioning of prominent antitubercular drugs are required to attain viable control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.