Viral infection is a kind of cellular stress that leads to the changes in cellular metabolism. Many metabolic pathways in a host cell such as glycolysis, amino acid and nucleotide synthesis are altered following virus infection. Both oncogenic and non-oncogenic viruses depend on host cell glycolysis for their survival and pathogenesis. Recent studies have shown that the rate of glycolysis plays an important role in oncolysis as well by oncolytic therapeutic viruses. During infection, viral proteins interact with various cellular glycolytic enzymes, and this interaction enhances the catalytic framework of the enzymes subsequently the glycolytic rate of the cell. Increased activity of glycolytic enzymes following their interaction with viral proteins is vital for replication and to counteract the inhibition of glycolysis caused by immune response. In this review, the importance of host cell glycolysis and the modulation of glycolysis by various viruses such as oncogenic, non-oncogenic and oncolytic viruses are presented.
Background The influenza virus enters the host via hemagglutinin protein binding to cell surface sialic acid. Receptor-mediated endocytosis is followed by viral nucleocapsid uncoating for replication aided by the transmembrane viral M2 proton ion channel. M2 ectodomain (M2e) is a potential universal candidate for monoclonal antibody therapy owing to its conserved nature across influenza virus subtypes and its importance in viral propagation. Methods The phage-displayed naive human antibody libraries were screened against the short stretch of the N-terminal 10-mer peptide (SLLTEVETPI) of the M2e. ELISA, BLI, and flow cytometry assays were used to examine scFv binding to M2e epitopes. The scFv crystal structures were determined to examine the nature of the interactions. The potencies of the scFvs against the influenza virus were demonstrated by real-time PCR and confocal microscopy imaging. Results The four unique scFv clones were obtained from the scFv phage-display antibody libraries and shown to exhibit binding with the 10-mer conserved part of the M2e and with full-length M2 protein expressed on the HEK293T cells. The crystal structure of scFv AU1 with M2e peptide showed the peptide as a dimer in the parallel beta-sheet conformation bound at the interface of two scFv CDRs. The scFv AU1 significantly restricted the release of H1N1 virus progeny from the infected A549 cells. Conclusion This structural and biochemical study showcased the binding of antibody scFv molecules with M2e peptide dimer, providing the structural insights for the function effect in terms of recognizing and restricting the release of new viral particles from an infected host cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.