Over the past several decades, xenobiotic chemicals have badly affected the environment including human health, ecosystem and environment. Animal-sourced biopolymers have been employed for the removal of heavy metals and organic dyes from the contaminated soil and waste waters. Animal-sourced biopolymers are biocompatible, cost-effective, eco-friendly, and sustainable in nature which make them a favorable choice for the mitigation of xenobiotic and hazardous compounds. Chitin/chitosan, collagen, gelatin, keratin, and silk fibroin-based biopolymers are the most commonly used biopolymers. This chapter reviews the current challenge faced in applying these animal-based biopolymers in eliminating/neutralizing various recalcitrant chemicals and dyes from the environment. This chapter ends with the discussion on the recent advancements and future development in the employability of these biopolymers in such environmental applications.
Biopolymers have received a lot of interest recently, and academic and industrial research on biopolymers has been refocused. These biopolymers comprise naturally occurring substances as well as artificial substances created from naturally occurring monomers. Plastics have the potential to be replaced by biopolymers because they are hazardous to the environment and rely on nonrenewable resources like petroleum for production. Due to the overwhelming interest in biopolymers, characterization tools and processes have emerged as crucial components in biopolymer research to examine and enhance the characteristics and functionality of materials based on biopolymers. When evaluating the performance of these bio-nanocomposites, using the right tools for characterization is crucial. This review concentrated on high-level analytical methods for characterizing biopolymers, biopolymer-based composites, and their derivatives structurally, physically, and chemically. The most common analytical instrument methods based on microscopy (Optical, laser scanning confocal, scanning tunneling, scanning probe, differential dynamic, scanning, and transmission electron) and spectroscopy (Fourier transform infrared, X-ray diffraction, and Raman). The use of these tools for characterization in current research studies is also highlighted in order to demonstrate how the biopolymer under study might be used in various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.