There is no difference in the rate of post-tonsillectomy bleeding in patients with abnormal coagulation studies as compared with patients with normal coagulation studies obtained preoperatively.
This study encompasses multiple diagnoses, procedures, VFI techniques, and methods of anesthesia. AIOLPs are exceptionally well tolerated by patients, resulting in extremely high completion and satisfaction rates.
CXC chemokine receptor 3 (CXCR3) signaling promotes keratinocyte migration while terminating fibroblast and endothelial cell immigration into wounds; this signaling also directs epidermal and matrix maturation. Herein, we investigated the long-term effects of failure to activate the "stop-healing" CXCR3 axis. Full-thickness excisional wounds were created on CXCR3 knockout((-/-)) or wild-type mice and examined at up to 180 days after wounding. Grossly, the CXCR3(-/-) mice presented a thick keratinized scar compared with the wild-type mice in which the scar was scarcely noticeable; histological examination revealed thickening of both the epidermis and dermis. The dermis was disorganized with thick and long collagen fibrils and contained excessive collagen content in comparison with the wild-type mice. Interestingly, the CXCR3(-/-) wounds presented lower tensile/burst strength, which correlates with decreased alignment of collagen fibers, similar to published findings of human scars. Persistent Extracellular matrix turnover and immaturity was shown by the elevated expression of proteins of the immature matrix as well as expression of matrix metallopeptidase-9 MMP-9. Interestingly, the scars in the CXCR3(-/-) mice presented evidence of de novo development of a sterile inflammatory response only months after wounding; earlier periods showed resolution of the initial inflammatory stage. These in vivo studies establish that the absence of CXCR3(-/-) signaling network results in hypertrophic and hypercellular scarring characterized by on-going wound regeneration, cellular proliferation, and scars in which immature matrix components are undergoing increased turnover resulting in a chronic inflammatory process.
Insight into the underlying pathophysiology of vocal fold fibrosis is likely to yield improved therapeutic strategies to mitigate vocal fold scarring. Our data suggest that TGF-beta signaling may be both paracrine and autocrine in this vocal fold fibroblast cell line, and we therefore propose that TGF-beta may be a reasonable target for therapies to prevent and/or treat vocal fold fibrosis, given its putative role in both acute and chronic vocal fold injury, as well as its effects on vocal fold fibroblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.