Nephronophthisis (NPHP), Joubert (JBTS) and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins, and discovered three connected modules: “NPHP1-4-8” functioning at the apical surface; “NPHP5-6” at centrosomes; and “MKS” linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.
BackgroundPlain radiography is the first choice for diagnosis and monitoring of knee-osteoarthritis (OA) while, Kellgren–Lawrence score (KL) is most widely used to grade OA severity. However, incompetency for reproducibility of joint space measurement in longitudinal assessment and non-linearity of KL-score system, limits radiography-based early diagnosis of the disease. Glycosaminoglycan (GAG) is direct cartilage-degradation product, which can be measured biochemically. We strived to correlate KL-score and GAG from OA patients to compliment KL-system.MethodsWe obtained 34 synovial-fluid (SF) samples from 28 OA patients (few bilateral) with different disease severity using arthrocetesis. All patients were categorised using radiographic KL-score-system. SFs were further analysed for GAG estimation using 1,2-dimethylmethylene blue (DMMB) assay.ResultsA substantial increase in GAG was noted in KL-grade-II and III, comparing grade-I patients, indicating amplified cartilage-degradation. KL-grade-IV patients revealed further rise in GAG reflecting more cartilage-loss. Another category of grade-IV patients with lower GAG were also detected, indicating close to total cartilage-loss.ConclusionsAccurate diagnosis of cartilage-loss remains a challenge with OA due to limitations of KL-system; thus no target intervention is available to arrest active cartilage-loss. We propose, GAG-estimation in OA patients, characterizes accurate biochemical depiction of cartilage degeneration. General Significance: Radiology often fails to reveal an accurate cartilage loss, associated with OA. GAG levels from the SFs of OA patients' serve as a useful marker, which parallels cartilage degeneration and strengthen radiographic grading system, ultimately
Failure of conventional anti-inflammatory therapies in osteoarthritis (OA) underlines the insufficient knowledge about inflammatory mechanisms, patterns and their relationship with cartilage degradation. Considering non-linear nature of cartilage loss in OA, a better understanding of inflammatory milieu and MMP status at different stages of OA is required to design early-stage therapies or personalized disease management. For this, an investigation based on a synovium-synovial fluid (SF) axis was planned to study OA associated changes in synovium and SF along the progressive grades of OA. Gene expressions in synovial-biopsies from different grades OA patients (N = 26) revealed a peak of IL-1β, IL-15, PGE2 and NGF in early OA (Kellgren–Lawrence (KL) grade-I and II); the highest MMP levels were found in advanced stages (KL grade-III and IV). MMPs (MMP-1, 13, 2 and 9) abundance and FALGPA activity estimated in forty SFs of progressive grades showed the maximum protein levels and activity in KL grade-II and III. In an SF challenge test, SW982 and THP1 cells were treated with progressive grade SFs to study the dynamics of MMPs modulation in inflammatory microenvironment; the test yielded a result pattern, which matched with FALGPA and the protein-levels estimation. Inflammatory mediators in SFs served as steering factor for MMP up-regulation. A correlation-matrix of IL-1β and MMPs revealed expressional negative correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.