Proteins of the Homeodomain-Interacting Protein Kinase (HIPK) family regulate an array of processes in mammalian systems, such as the DNA damage response, cellular proliferation and apoptosis. The nematode Caenorhabditis elegans has a single HIPK homologue called HPK-1. Previous studies have implicated HPK-1 in longevity control and suggested that this protein may be regulated in a stress-dependent manner. Here we set out to expand these observations by investigating the role of HPK-1 in longevity and in the response to heat and oxidative stress. We find that levels of HPK-1 are regulated by heat stress, and that HPK-1 contributes to survival following heat or oxidative stress. Additionally, we show that HPK-1 is required for normal longevity, with loss of HPK-1 function leading to a faster decline of physiological processes that reflect premature ageing. Through microarray analysis, we have found that HPK-1-regulated genes include those encoding proteins that serve important functions in stress responses such as Phase I and Phase II detoxification enzymes. Consistent with a role in longevity assurance, HPK-1 also regulates the expression of age-regulated genes. Lastly, we show that HPK-1 functions in the same pathway as DAF-16 to regulate longevity and reveal a new role for HPK-1 in development.
*Background: Tightly regulated pathways maintain the balance between proliferation and differentiation within stem cell populations. In Caenorhabditis elegans, the germline is the only tissue that is maintained by stem-like cells into adulthood. In the current study, we investigated the role played by a member of the Homeodomain interacting protein kinase (HIPK) family of serine/threonine kinases, HPK-1, in the development and maintenance of the C. elegans germline. Results: We report that HPK-1 is required for promotion of germline proliferation during development and into adulthood. Additionally, we show that HPK-1 is required in the soma for regulation of germline proliferation. We also show that HPK-1 is a predominantly nuclear protein expressed in several somatic tissues including germline-interacting somatic cells. Conclusions: Our observations are consistent with a conserved role for HIPKs in the control of cellular proliferation and identify a new context for such control in germ cell proliferation. Developmental
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.