Effective thermal management is critical for the operation of many modern technologies, such as electronic circuits, smart clothing, and building environment control systems. By leveraging the static infrared-reflecting design of the space blanket and drawing inspiration from the dynamic color-changing ability of squid skin, we have developed a composite material with tunable thermoregulatory properties. Our material demonstrates an on/off switching ratio of ~25 for the transmittance, regulates a heat flux of ~36 W/m
2
with an estimated mechanical power input of ~3 W/m
2
, and features a dynamic environmental setpoint temperature window of ~8 °C. Moreover, the composite can manage one fourth of the metabolic heat flux expected for a sedentary individual and can also modulate localized changes in a wearer’s body temperature by nearly 10-fold. Due to such functionality and associated figures of merit, our material may substantially reduce building energy consumption upon widespread deployment and adoption.
Cephalopods possess unrivaled camouflage and signaling abilities that are enabled by their sophisticated skin, wherein multiple layers contain chromatophore pigment cells (as part of larger chromatophore organs) and different types of reflective cells called iridocytes and leucophores. The optical functionality of these cells (and thus cephalopod skin) critically relies upon subcellular structures partially composed of unusual structural proteins known as reflectins. Herein, we highlight studies that have investigated reflectins as materials within the context of color-changing coatings. We in turn discuss these proteins' multi-faceted properties, associated challenges, and future potential. Through our presentation of selected case studies, we hope to stimulate additional dialogue and spur further research on photonic technologies based on and inspired by reflectins.
Cephalopods (e.g., squid, octopuses, and cuttlefish) have long fascinated scientists and the general public alike due to their complex behavioral characteristics and remarkable camouflage abilities. As such, these animals are explored as model systems in neuroscience and represent a well-known commercial resource. Herein, selected literature examples related to the electrical properties of cephalopod-derived biopolymers (eumelanins, chitosans, and reflectins) and to the use of these materials in voltage-gated devices (i.e., transistors) are highlighted. Moreover, some potential future directions and challenges in this area are described, with the aim of inspiring additional research effort on ionic and protonic transistors from cephalopod-derived biopolymers.
Alzheimer's disease is the prevalent cause of premature senility, a progressive mental disorder due to degeneration in brain and deposition of amyloid β peptide (1–42, a misfolded protein) in the form of aggregation that prevails for a prolonged time and obstructs every aspect of life. One of the primary hallmarks of the neuropathological disease is the accretion of amyloid β peptide in the brain that leads to Alzheimer's disease, but the mechanism is still a mystery. Several investigations have shown that mutations at specific positions have a significant impact in stability of the peptide as predicted from aggregation profiles. Here in our study, we have analyzed the mutations by substituting residues at position A22G, E22G, E22K, E22Q, D23N, L34V and molecular dynamics have been performed to check the deviation in stability and conformation of the peptide. The results validated that the mutations at specific positions lead to instability and the proline substitution at E22P and L34P stalled the aggregation of the peptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.